The magazine for Sinclair ZX80 users

Graphics:

- Automatic Display Changes
- Graphics Tricks
- Hunt for Gold
- Walls and Dikes

SYNTAX ZX8O

A PUBLICATION OF THE HARVARD GROUP

SYNTAX ZX80 is a brand-new monthly newsletter created just for you. We bring you news, reviews and forecasts of hardware, software and applications for your ZX80 or MicroAce, as well as technical details for circuit-builders. SYNTAX also provides a forum for users to share advice and problems about programs, vendors and topics of mutual interest. As more products become available, we'll bring you the ads and releases that keep you informed.

At SYNTAX we emphasize practicality. You can apply our suggestions even if you aren't sure at first why they work, because we give you complete instructions. Text is clear and easy to understand. SYNTAX readers already know about:

- An automatic phone-dialer they can put together in a few hours
- Syntactic Sums ${ }^{\text {M }}$ to check input for errors
- Printing characters four times normal size
- Programs to explore computer memory
- Cassette eavesdropping to locate files on tape and simplify loading
- How to build their own external additional RAM
- How to add an 8212 I/O chip to control external devices from their computers
And SYNTAX readers like what they get every month. Subscribers know they can depend on us.

After receiving only three issues of SYNTAX ZX80, I find that I anxiously await the next issue . . . keep up the good work!

Martin Irons Goshen, NY
Congratulations on the brass-tacks, down-to-earth approach of your newsletter. I'll be looking forward to future issues.

Otis Imboden Washington, DC
Many readers get their first issue and immediately order the back issues - more proof that they like what they see.

What's special about our publication? Just look through one issue. We work hard to bring you a quality newsletter. We strive to print useful programs of above-average accuracy. As any computer magazine editor can tell you, program listing accuracy is tough to achieve, but we boost our average with every issue. We test each program to make sure it works, it fits in the designated RAM, and it runs when you follow the directions. We print program listings in screen-image format to make it easier for you (it's sure not easier for us!) to enter programs accurately. We invented Syntactic Sum ${ }^{\text {TM }}$ as an additional aid for you in getting error-free programs. With your subscription you also get access to hundreds of other readers, and our staff experts are available by phone to answer your questions or help you solve problems with your machine.
SYNTAX readers get every month:

- Latest news of Z80 hardware and software
- Programs to organize information, calculate, entertain, or instruct
- Do-it-yourself additions to the ZX80/MicroAce
- Clear explanations for beginners

To share the benefits of SYNTAX ZX80, just complete the coupon below and return it with your choice of payment. You will receive a year's subscription, 12 issues, for only $\$ 25$ in US funds (plus $\$ 13$ for foreign airmail if you live outside North America).

We are so sure you'll find SYNTAX useful that we promise to refund your entire subscription fee if you aren't satisfied. An unconditional guarantee - you can't lose. But if you're still skeptical, write for a free sample issue and see for yourself how SYNTAX can help you use and enjoy your ZX80 or MicroAce more.

Join the others who stretch the ZX 80 s and MicroAces to their utmost. Act now - as soon as we receive your coupon with payment, your first issue will be on its way. For faster service, phone your credit card order to 617/456-3661. Don't miss SYNTAX!

YES! Please send me 12 issues of SYNTAX for $\$ 25$.
\square My check for $\$ 25$ is enclosed. \square Please charge my \square MasterCard \square Visa \square American Express
\square Diner's Club account.
account number

The magazine for Sinclair ZX80 users

Variable Conversions in the ZX80
Sutton
From one variable to another
27Graphics, Games, and GoldOakesBuilding program units
30A Trick and a Graphic SystemComer
Draw your own pictures on the $Z \times 80$32GauntletBerggrenA dash between monsters and walls
3333Try ThisA column for short programsForest TreasureFrahmOvercome the dangers for the goldTranslating from Other BasicsLubarON . . . GOTO and LEN8K Basic ROM and 16K-Byte RAMSpecificationsKey Click GeneratorJohnsonMaking entries audibleZX80 Keyboard . OrnsteinLocating key closuresCrash Cursor . TrumanThe Glitchoidz strike
48
Staff

Publisher/Editor-in-Chief Editorial Director Managing Editor Associate Editor Secretary
Production Manager Typesetter
Financial Coordinator Bookkeeper Customer Service Order Processing Circulation

MEMBER
EIIIA

Index to Advertisers
Advertiser

Volume 1, Number 3

SYNC is published bi-monthly for $\$ 10.00$ per year by Creative Computing. 39 E. Hanover Ave.. Morris Plains. NJ 07950. Second class postage paid at Morris Plains. New Jersey 07950, and additional entry offices.

Postmaster: Send address changes to SYNC, P.O. Box 789-M, Morristown, NJ 07960.

Subscriptions in USA: 6 issues $\$ 10 ; 12$ issues $\$ 18$ 18 issues $\$ 24$. UK and foreign airmail subscriptions: 6 issues $£ 10 ; 12$ issues $£ 18 ; 18$ issues $£ 25$. Call (800) 631-8112 toll-free (in NJ, 201-540-0445) to begin your subscription.

Copyright 1981 by Creative Computing. All rights reserved. Reproduction prohibited in any form.

ZX81 Announced in Great Britain

Sinclair Research is now advertising the new ZX81 computer in British computer magazines. An improved version of the ZX80 computer, the ZX81 has been redesigned to incorporate a number of new features. The ZX 80 reduced the number of integrated circuits to 21 , but the ZX81 further reduces the number of chips to four by using a new custom-built chip that replaces 18 others. The 8 k Basic ROM chip (now also available for the ZX80 as a drop-in replacement) gives the user the capacity to use decimals with 8 place accuracy, to work with \log and trig functions (with their inverses), to plot graphs, and to make animated displays. A new 40 key keyboard expands the number of key words that can be entered by one key stroke, e.g., PEEK, POKE, SCROLL. This eliminates typing out these words.

Twenty new graphics characters and 54 inverse video characters increase the graphics capabilities. Users have the choice

of two speed modes: "slow" and "fast" which is four times the "slow" mode and comparable to other personal computers. The slow mode eliminates screen flicker. Although the 1 K RAM is the same as for
the ZX80, it can be expanded by plugging in the new 16 K memory unit. (So can the ZX80.)

The ZX81 will sell in Great Britain for $£ 69.95$, but it will not be available in the U.S. for the foreseeable future. Even if we colonials fly to Britain to buy it, the British version will not work with an American TV set. However, ZX80 users can have most of the capabilities (excluding the animated display) if they upgrade to the new 8 K Basic ROM which is now available in the U.S. for $\$ 39.95$ plus shipping from Sinclair Research (see Resources Column).

Sinclair has also announced that a 32 column printer will be available in the summer of 1981 for about $£ 50$. This will work with the 8 K ROM machines.

"ZX-80 BASIC" A complete disassembled, annotated listing of the Sinclair 4K Basic, with Cross reference table. Discover how and why Your ZX-80 works.

PROGRAMS supplied on Cassette

E1.01-LCM \& HCF, Prime factors, Statistics, Bar-chart plotter 1 K U1.01 - Line renumberer, Stopwatch, LEN(\$) 1K
M1.01 - Day finder, Sequence guesser, Scetcher 1 K
M2.02-LIFE: $1 / 7$ second per generation, with demo program $2 K$
G1.01-Hangman, Matchstick game, Battleships, Hi-low 1 K
G3.03-Zombies, Sink the sub, Nim 3 K
G4.04-STARTREK: All the features of most larger games 4 K
G4.04-Sword of peace: Dungeons \& Dragons type game 4K

UK	USA
$£ 9.50$	$\$ 29.50$
$£ 3.20$	$\$ 9.50$
$£ 3.50$	$\$ 10.75$
$£ 2.70$	$\$ 8.25$
$£ 5.00$	$\$ 16.00$
$£ 3.20$	$\$ 9.50$
$£ 3.70$	$\$ 11.50$
$£ 4.00$	$\$ 13.00$
$£ 4.00$	$\$ 13.00$

(ALL PRICES INCLUDE POSTAGE \& PACKING) For free catalogue send SAE or $1 \$$ to:

ARTIC COMPUTING
396, James Reckitt Avenue, Hull, N.Humberside, HU8 OJA, England TO ORDER MAKE CHEQUES, P.O. Payable to ARTIC COMPUTING.

HINTS \& TIPS FOR THE ZX80

This super book on the $\mathbf{Z X 8 0}$ /MicroAce includes chapters on Saving Space, Machine Code Subroutines (including PAUSE and ACTIVE DISPLAY). Learn how to protect variables and how to CLEAR them one by one. 48 close-printed pages packed with routines and programs - $£ 4.25$

BUMPER BUNDLE - 14 programs on cassette for the 1 K ZX80/MicroAce including several with ACTIVE DISPLAYs. Normal price £12.25, SPECIAL OFFER $£ 6.75$ only for orders received by 31 May 1981.

All price include p\&p

Send SAE for full catalogue

Hewson Consultants

7 Grahame Close Blewbury Oxon
0x119QE UK
Tel 0235850075
Dealer enquiries welcome

Software Review...

Unfriendly Skies

David Lubar

Name: Super ZX80 Invasion
(1 K and 2 K)
Type: Fantasy Game
System: Sinclair ZX80; MicroAce
Format: Cassette
Language: Basic
Summary: Best action game we have seen for the ZX80.
Price: $\mathbf{\$ 1} 4.95$ plus $\$ 1.50$ shipping
Manufacturer: SOFTSYNC, INC.
P.O. Box 480

Murray Hill Station
New York. NY 10156
A cult has grown around the game of Space Invaders. Individuals with glazed eyes and pockets full of quarters have been known to haunt arcades for hours, sending countless rows of aliens to a laser death. Now, Sinclair owners can experience the same mania in their own homes. Using
an active display to produce true animation, Softsync has given us Super ZX80 Invasion for the Sinclair. The tape comes with both 1 K and 2 K versions of the game. Let's start with the 1 K program.

The player has a ship (or laser base, depending on your interpretation) at the bottom of the screen. The ship can be moved left or right using the arrow keys. The 0 or 9 key is used for shooting. Above the player, rows of aliens rain down missiles. The aliens move slowly across the screen, and the entire group moves closer to the player on each pass. If you shoot them all before being hit five times, you are rewarded with another screenful of aliens. That's basically it. The 1 K version doesn't keep score, so you have to remember how many frames of aliens you have destroyed. Your ship contains a number telling you how many ships are left. When the number reaches zero, the game starts over. There are three skill levels available in the 1 K version.

The program is fast, which introduces a problem. You have no chance to get set. As soon as it starts, the aliens are shooting at you. You can lose two or three ships before even touching a key. When your last ship is destroyed, there is no pause. The game starts again. If you are down to one ship and one alien, it can be hard to tell who hit who.
The 2 K version does keep track of the number of frames completed. It also allows for fifty different skill levels, more aliens, and extended play for each frame completed. Unfortunately, there is no way to stop the game and change skill levels. Once it is running, you can only stop it by pulling the plug. To go to a different skill level, you have to reload the tape.
Despite these problems, the game is fun, assuming you aren't easily frustrated. It is probably the best Sinclair game to hit the market so far. The programmers have to be congratulated for putting so much into 1 K of space.

Handling Character Strings in the $\mathbf{Z X 8 0}$

Hasse Taube

From the first day I tried to operate my new ZX80. I have been looking for a way to simulate some of the character-string operations possible in other programming languages. but not in the ZX80 Basic. An idea mentioned by Michael Kirkland in Personal Computer World. February, 1981. on using USR (47) to obtain the address of the end of the variables provided me with the key to start my programming tricks in the ZX 80 .

Consider the following piece of code:

100 LET A $\$=$ "ABCDEFGHIJKLMNOPQ"
200 LET A=USR(47)
Then A is the address of the byte after the last ${ }^{*}$.

Consider also:
100 LET AS="ABCDEFGHIJKLMNOPQ" 200 LET A=USR(47)-2
A will contain the address of the last byte of the previous character string; in this case. A will be the address of the letter Q .

In order to use this facility, you should not have any other statements between 100 and 200 in the examples mentioned above. To test this on your ZX80, enter the following short program:
100 LET AS = "ABCDEFG"
200 LET A = USR (47)

300 PRINT CHRS (PEEK (A))

This should give the letter G as output. i.e.. the last character in a character string AS.

You know, of course, that you can always get the first character in a character string by a piece of code like this:

100 LET As ="ABCDEFGHIJ"

200 LET BS $=$ CHRS $(\operatorname{CODE}(\mathrm{AS}))$
Then the variable $B S$ will get the value A. i.e.. the first character of the character string AS.

[^0] Danmark

It is, however, not so easy to get the last - or in fact any other than the first character. This is now possible with the use of the technique just described.

Suppose you want the last character of a string variable after a value has been assigned to it by an INPUT:
100 INPUT AS
200 LET A = USR (47)-2
300 PRINT CHRS(PEEK (A))
If you run this program and input. say, QWERTY, the output should be Y.

In other words, if you use: (line number) LET A=USR (47)-2 immediately after an assignment of a string variable by a LET-statement or by an INPUT-statement, the variable A will point to the last character in the string.

If you know the length of the string, it is easy to take a substring from it. Suppose you know that the length of the string is 5 as in the following example:
100 LET AS = "ABCDE"
200 LET A=USR(47)
300 LET BS $=$ "XX"
400 LET B $=$ USR (47)
500 POKE B-2.PEEK (A-5)
600 POKE B-3.PEEK (A-6) 700 PRINT BS
Then the output will be $A B$. i.e.. the first two characters from the string AS.

By using the example above with other values in statements 500 and 600, you could, of course, get another substring from AS. Also, if you would like to take a larger substring than just two characters as in the example, you probably would set up for a FOR...NEXT loop to do the POKE's and PEEK's.

Suppose you do not know the length of the string variable from which you want to take, say, the second and third characters. How can you find the length of a string variable? Several methods are available. The first uses the TL\$ in a loop like this:
100 INPUT AS
200 LET B $\$=A \$$
300 FOR I = 1 TO 1000

400 LET AS $=$ TLS(AS)
500 IF AS $=\cdots$ THEN GO TO 1000
600 NEXT I
1000 LET AS $=$ BS
1100 PRINT I
Then the output-value will be the length of the string which you input.

A much more interesting method for finding the length of a string also gives you the address of the beginning of the string. In this second method strings are internally stored in the ZX80 as follows:

- One byte with a code for the name of the string;
-The string itself from first character to last character:
- The ending quote.

The first byte contains a value which is equal to decimal 96 plus the code for a letter and which names the string. For example, a string named AS will have $96+38=134$ (decimal) in the first byte. A string named ZS will have $96+63=159$ (decimal) in the first byte. To understand these examples, you must know that the ZX 80 representation for A is 38 and Z is 63. (See your instruction manual for the ZX80.)

To find the address of the first byte of the string in a string variable, you must set up a loop to test for the value in the first byte, described above. Assuming you know the address of the byte after the ending quote from $\operatorname{USR}(47)$, this should be fairly simple:
100 INPUT AS
200 LET A $=$ USR (47)
300 FOR I = 0 TO 1000
400 LET J =A $-2-\mathrm{I}$
$500 \operatorname{IF} \operatorname{PEEK}(\mathbf{J})=134$ THEN GO TO 1000
600 NEXT I
1000 PRINT I
The program above will print out the length of the string which you input, but more interestingly, after statement 1000 , J will point to the first byte of AS, and $\mathrm{J}+1$ will point to the first byte in the string itself.

More Truth in Programming

David Lubar

The other day, while blithely working on a program. I discovered that something was amiss. I had made an assumption about a certain Boolean operator, and passed on the information without checking my assumption. As Murphy's law would have it, the assumption was wrong. Going back to the article in issue two of $S Y N C$, there is a discussion of various tricks with logical operators. For example, to test whether a number is not zero, you could use the following program.

10 INPUT N

20 IF N THEN PRINT "NOT ZERO"
There is no problem here. The expression will only be true if N has a value other than zero. I had assumed that the converse was also true, believing expressions such as

IF NOT N THEN PRINT "THE NUMBER IS ZERO"
would also work. To put it bluntly, they don't. The reason for this is that NOT can function in two different ways (actually. it always functions in the same way, but has two different applications). When working only with true and false (values of -1 and 0), NOT will always make a true expression false, and make a false expres-
sion true. So far. so good. As long as the universe is restricted to the values 0 and -1 , there is no problem.

Before going on. try the following on your computer. Ask it to PRINT NOT (0). Then ask it to PRINT NOT (-1). As you can see, this works in the expected manner. Now try PRINT NOT (5). You might expect an answer of 0 , since 5 (or any number other than zero) is considered to be true when evaluated logically. But life is not that simple. What NOT actually does is to take each bit in the byte and change it. Ones becomes zeroes, zeroes become ones. Now, if you've been trying all this, you'll have found that any positive number N, when used in PRINT NOT(N) will produce a negative number. This has to do with the way the Sinclair stores numbers. In positive numbers, the highest bit is set to zero. In negative numbers, this bit is set to one. Since NOT changes each bit, it will change the sign of most numbers.

You've probably also noticed that PRINT NOT (5) does not produce -5 . This, also, is tied in with the way numbers are stored in the Sinclair, and will be discussed in a later issue.

By now, it should be obvious that you can't test for zero with IF NOT (N) THEN PRINT "THE NUMBER IS ZERO". If N is 0 , NOT (N) will produce a value of -1 , making the expression true. In this case, that is what we want. When N is zero, the expression will be true, and the statement "THE NUMBER IS ZERO" will be printed. And if N is -1 , there is still no problem, since NOT (-1) will produce 0 , making the expression false. But if N is any other number, NOT (N), as we've seen, will return a value other than zero or minus one. And, when evaluating the IF...THEN statement, the Sinclair will consider any value other than zero to be true. So IF NOT (N) THEN PRINT "THE NUMBER IS ZERO", will end up printing the message for any value of N other than minus one.

To sum it up, as long as an expression produces only logical values (0 or -1). you can safely use NOT. Expressions such as IF NOT ($\mathrm{A}=\mathrm{B}$) THEN GO TO 10 , or IF NOT (X 5 AND Y 8) THEN GO TO 10 are fine. They only deal with logical operators. The value inside the parentheses will be either zero or minus one. But if other integers enter the expression, it's not safe to use NOT.

KNOW YOUR ZX80

NOW AVAILABLE

With LINSAC products for the Sinclair ZX80

The ZX80 Monitor A complete assemblv languoge isting of the zxxos 4 K Monitor, with annotations. Available as a clear typeset booklet from 16 th March, price $£ 5.95$. Cassette Software
All LINSAC progam precks we on single C12
streted. Price 67.95 per pack incl. UK postage.
GAMES PACK 1 - Three Towers, Number Guessing, Mastermind, Sketcher, Hurkele, Nim, Symbol Simon. GAMES PACK 2 games pack 3 GAMES PACK 4 EDUCATION PACK 1 EDUCATION PACK 2 EDUCATION PACK 3
 Destination Venus. 3 D Noughts \& Croses, Anagrams, interaction Maths Drall, Dot Recognition, Musical Noter. Spelling Quiz, Dav Fin Graph Plotret, Prime Factors, Number Bases. Bar Charts, Statistics. I2Kn- Compule Assisted Leaming Quir Package with three sat LINSAC 68 Barker Road, Linthorpe,
Middlesbrough, Co.Cleveland TS5 5ES

keyboord conversions

- Standard Computer Keyboard
- Type programs in half the time
- Minimize errors
- Wired keyboard hooks up in minutes

Plans for keyboard conversion with reverse video \$10.00

Keyboard with complete parts and plans $\$ 65.00$
Wired keyboard, complete with plans $\$ 85.00$

Mail for information:
L.J.H. Enterprises
P.O. Box 6273, Orange, CA 92667
For information or Visa or MasterCard orders call (714) 772-1595. Shipping charge for U.S. $-\$ 5.00$.

2×80 SDFTHARE 0 Cussette

BUTIPAPAH-25

25 programs for the unexpanded 2×80 on 3 cassettes. These are made up from the best of our cassettes $1-8$, and include biorhythms, moon-landing, hangman, ZX80 art, stopwatch, treasure hunt, battleships and they represent incredible value,

EDULATIITAL

FPENCH VOCAB This program requires 16 Kand contains 200 French words with theirtranslations. Reference \& testing modesin both directions(F-E \& E-F)MULTIPLE CHOICE Allows you to enter anyset of up to 25 multiple choice questionsand performs testing, marking \& correct-ing. By SAVEing the complete program, a large number of tests may be derived from this program - very easy to use. 16 K JUNIOR MATHS $5-12$ yrs. Tables, division, adiition \& subtraction, or a mixture may $b \in$ tested in this self-contained, easy to use program. Variety of question types, age-dependent timing, scoring etc. 6 K

Programming

 Course second editionThe course consists of a book and a cassette of prograns, and has been designed to supplement the Sinclair manual. It is assumed that this has already been studied, and that the reader is capable of constructing very elementary programs. In our book, the $2 \times 80^{\prime}$ B BASIC is explained in more detail, with special attention being given to those aspects likely to caus difficulty, for example, the use of FEEK and POKE and the USR function. An introduction to machine code is given, removing some of the mystery wis surrounds this subject, and there is also a section explaining the workings of the 280 microprocessor.

The accompanying cassette contains ready to run programs, which are dealt with in the text, which also includes many other useful programing exsmples. The emphasis is on understanding, and the course should give you the confidence to construct your own involved programs, thereby getting the nost out of your 2×80.

UK £8.95
 US \$21

PRICES INCLUSIVE
251 HENLEY ROAD COUENTRY CUZ IBK

ENGLAND
BUO-BGIE

Black Hole Bill Eckel

Black Hole is a game based on a machine language program on my Elf II which uses the RCA 1802 Microprocessor. I understand it was originally called "Teaser." The challenge of rewriting it in Basic for the small memory could not be resisted. The program takes a little over 1 K of memory.

Black Hole

You are in space looking at your computer screen which shows a star surrounded by black holes.

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & * & 0 \\
0 & 0 & 0
\end{array}
$$

To escape you must get the pattern to be a black hole surrounded by stars.

* * *
* 0 *
* * *

You can only fire at stars. The stars explode. leaving a black hole. but they also produce new stars in other locations. What the galaxy will look like after you fire at a star is important.

1 x . x 2 x . x 3 x . . . x . . . x
$\mathrm{x} x$. . . . $\mathrm{x} x \mathrm{x}$. . $\mathrm{x} 5 \mathrm{x} \cdot .6 \mathrm{x} \times$. . .
x x
$\times 9$
The number is the star fired upon. The x's are the holes changed to stars or stars changed to holes (the reverse of what they used to be). The .'s are the star or holes that are unaffected.
For convenience sake the computer displays the star numbers in a block next to the galaxy pattern. Examples are:
000
123
Shoot star 5
0 * 0
123
0 * $0 \quad 456$
000
789
will result in
this

* 0 *
456
0 * 0
789

Do not end with all black holes or you will be lost in space forever!

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

The lowest possible number of turns to solve the problem is eleven. There are many ways to solve it; here are two:
5.2.8.1.7.3.5.9.2.8.5
5.2.1.3.8.7.5.2.9.8.5

You cannot read the program listing and figure out how to solve it. It is very challenging game which will give hours of fascinating fun.

5 REM BLACK HOLE WRITTEN BY BILL ECKEL APRIL 2, 1981
10 DIM X(9)
14 FOR I $=1$ TO 9
$16 \operatorname{LET~X}(\mathrm{I})=0$
18 NEXT I
$20 \operatorname{LET} \mathrm{X}(5)=1$
25 CLS
30 PRINT, "BLACK HOLE"
32 PRINT
34 PRINT
35 LET I $=1$
40 PRINT ,;
42 FOR A $=1$ TO 3
44 IF X(I) $=1$ THEN PRINT "*";
46 IF X(I) $=0$ THEN PRINT "O";
48 LET I $=\mathrm{I}+1$
49 PRINT " ";
50 NEXT A
52 PRINT .; I - 3; " " I - 2, " "; I-1
53 PRINT
54 IF NOT I $=10$ THEN GOTO 40
56 PRINT
58 PRINT
60 GOSUB 1000
65 PRINT "WHICH STAR?"
70 INPUT S
75 IF S 1 OR S 9 THEN GOTO 70
78 IF X $(\mathrm{S})=0$ THEN GOTO 70
$85 \operatorname{LET~X}(\mathrm{~S})=0$
90 GOSUB S * 100
95 GOTO 25
100 LET B $=2$
110 GOSUB 980
120 LET B $=4$
130 GOSUB 980
140 LET B $=5$
150 GOSUB 980
160 RETURN
200 LET B $=1$
210 GOSUB 980
220 LET B $=3$
230 GOSUB 980
240 RETURN
300 LET B $=2$
310 GOSUB 980
320 LET B $=5$
330 GOSUB 980
340 LET B $=6$
350 GOSUB 980 360 RETURN 400 LET B $=1$ 410 GOSUB 980 420 LET B $=7$ 430 GOSUB 980 440 RETURN 500 LET B $=2$ 510 GOSUB 980 520 LET B $=4$ 530 GOSUB 980 540 LET B $=6$ 550 GOSUB 980 560 LET B $=8$ 570 GOSUB 980 580 RETURN 600 LET B $=3$ 610 GOSUB 980 620 LET B $=9$ 630 GOSUB 980

640 RETURN 700 LET B $=4$ 710 GOSUB 980 720 LET B $=5$ 730 GOSUB 980 740 LET B $=8$ 750 GOSUB 980 760 RETURN 800 LET B $=7$ 810 GOSUB 980 820 LET B $=9$ 830 GOSUB 980 840 RETURN 900 LET B $=5$ 910 GOSUB 980 920 LET B $=6$ 930 GOSUB 980 940 LET B $=8$ 950 GOSUB 980 960 RETURN

```
980 IF X(B) = 0 THEN GOTO 986
983 IF X(B) = 1 THEN X (B) =0
9 8 4 \text { RETURN}
986 LET X(B) = 1
9 9 0 ~ R E T U R N ~
1000 FOR I = 1 TO 9
1010 IF X(I) = 1 THEN GOTO 1050
1020 NEXT I
1025 PRINT "YOU BLEW IT"
1 0 3 0 \text { PRINT "YOU ARE LOST IN SPACE FOREVER"}
1040 STOP
1 0 5 0 ~ I F ~ X ( 5 ) ~ = ~ 1 ~ T H E N ~ R E T U R N ~
1060 FOR I = 1 TO 4
1 0 7 0 \text { IF X (I) = 0 THEN RETURN}
1080 NEXT I
1090 FOR I = 6 TO 9
1 1 0 0 \text { IF X(I) = 0 THEN RETURN}
1110 NEXT I
1120 PRINT "CONGRATULATIONS"
1130 PRINT "YOU FOUND THE BLACK HOLE"
1 1 4 0 ~ S T O P
```

SAMPLE RUN

BLACK HOLE

0	0	0	1	2	3
0	$*$	0	4	5	6
0	0	0	7	8	9

WHICH STAR?
5

BLACK HOLE

0	$*$	0	1	2
$*$	3			
0	$*$	4	5	6
0	7	8	9	

WHICH STAR?
2

> NEW ENGLAND SOFTWARE
> 7 GAMES FOR THE ZX8O
ND MICROACE ONCASSETTE MASTERMIND DOUBLEMIND SLOT MACHINE CRAPS TIC TAC TOE SUB RESCUE WHITE HOT NUMBER ALL RUN IN 1K RAM

> New England Soliware Box 691
> Hyannis, MA. 02601
> $\$ \mathbf{1 1 . 0 0}$ orders malled
> First Class (U.S.A.)
> £ 6.00
> Air Mail (England)
> YOUR BEST VALUE IN QUALITY SOFTWARE

The SYNC Challenge

In our first issue we challenged our readers to fit the Hammurabi game from Creative Computing's Basic Computer Games into the 1 K memory of the ZX80. A number of readers took us up on the challenge and submitted their entries. The results are as follows:

First place

Second place

Third place
(a one year subscription to SYNC and a SYNC T shirt): Michael Hodgkins 46 Broadway
Duffield
Nr. Derby
DE6 4BU
England
(a one year subscription to SYNC):
Un Jung Kang
1620 McElderry St. 12D-4
Baltimore, MD 21205
(a SYNC T shirt):
Ken Berggren
104 Ridgeway Ave.
Louisville, KY 40207

Honorable mentions

Dennis A. Adcock
9516-76 Street
Edmonton, Alberta
T6C 2K9
Canada
Lester S. Cottrell, Jr.
108 River Heights Drive
Cocoa. FL 32922
Bob Ferguson
19 Farrington Ave.
Allston, MA 02134

John P. Filley
1501 Murfreesboro Rd.
Nashville, TN 37217
Leonard Gaunt
44 Hartherop Road
Hampton Middlesex TW 12 2RP
England

Dennis A. Likens
Box 1125
Tuskegee Institute, AL 36088

Ian S. Logan
24, Nurses Lane
Skellingthorpe
Lincoln LN6 OTT
England
Claude Ostyn
Box 2035
Sitka, AK 99835
Robert M. Selz
P.O. Box 24

Pleasant Plains, IL 62677

Harley Shanko
15025 Vanowen. \#209
Van Nuys, CA 91405
Ken Stetina
3626 Eastway Drive
Island Lake, IL 60042

Ephraim Vishniac
38 Gorham Street
Arlington, MA 02174

Hammurabi in 1 k

Michael Hodgkins

```
    2 LET Y=1
    4 LET F}=10
    6 LEET A=1000
    3 LET G=A*S
    10 FRINT "WE HAVE ";G%" BUSHELS
    15 FFIINT "POFULATION ";F
    20 PRINT "CITY OWNS ";A:" ACRES"
25 LET T=FND(9)+16
30 IF Y=11 THEN GOTO 250
SS PRINT "LAND PRICE ";T;" BUSHELS/ACRE
40 PRINT "BUY HOW mUCH"
45 INPUT F
5 0 ~ I F ~ F = O ~ T H E N ~ G O T O ~ 7 0 ~
55 LET A=A+F
60 LET G=G-F*T
65 GUTO 90
70 PRINT "SELI HOW MUCH"
75 INFUT F
80 LE! F=-F
85 60TO 5S
90 ClG
95 LET R=FNO\9%
100 LET G=&-F#G
10S PRINT "FEED YOUF ":F%" SUEJEQTS-MAX ":G
1.0 INFUT F
112 IF FYQ THEN GOTO 110
115 CLS
120 LE! G=G-F
125 LE! F=F-R-F/20
135 IF F<O THEN LET F=0
140 PFINT F;" STAFVED"
145 IF F. 10 THEN GOTO 245
150 LET P=F-F
155 FFINT "SOW GRAIN"
157 PRINT "CITY OWNS ":A;" ACRES'
1&O FFINT "WE OWN SEED FOR ";G
165 FRINT F*g *" CAN EE TENDED"
170 INFUT F
175 IF F\F*9 OF F\A OF:F\G IHEN GOTO 170 175
180 CLS
185 LET G=G+RND (5)*F-F 185
190 FRINT "YF "%Y
195 IF R }=1\mathrm{ . THEN GOTO 225
200 FRINT F:" FEOFLE ENTGFED CITY
205 LET P=F+R
210 FRINT "RATS ATE ";R*g;" EUSHELS" }21
215 LET Y=\gamma+1
220 6OTO 10
225 FRINT "FLAGUE"
230 FRINT F-F/2;" DIE" 225-240
235 LET F=P/2
240 GOTO 210
- - - - - - - - - - = = =
245 FFINT "MURDERE:
250 FFRNT "END OF FEIGN
```2 follows:

The game begins by telling the player the state of the economy he is to manage. The lines of the game function as

Set up variables, year, population, acreage, and grain.

PRINT information on the screen.
Sets random land price.
Year counter to check for end of reign.
PRINTs land price and asks how much the player wishes to buy.
If no land is bought, the program jumps to 70.
Adjusts acres and grain according to the transaction.

Asks how much land the player wants to sell; then goes to 55 to adjust variables as before.

Chooses a random number to be used for a variety of things. First it subtracts the amount of grain eaten by rats.

Tells the player to feed subjects; checks that he is not feeding them more grain than he has; works out how many people starved and the remaining grain. If the number starved is too large, it jumps to 245.

Instructions to sow grain, telling player how much grain may be sown, tended, etc.

Checks that he is not cheating.
Decides crop to be harvested.
Gives readout of year's events.

Increments year number by 1 .
Returns to beginning of new year.
Plague routine; approximately half the people die.
Prints MURDERER if more than 10 people have starved.
Final statement; game over.

To run. press RUN and NEWLINE. Then enter your choices as called for by the computer.

When you reach "END OF REIGN" and want to start again. press any key and then press RUN and NEWLINE.

The program uses almost every byte of memory available. The same variable F is used for all INPUT's to save memory and also a single random number R is used for the number of people entering the city, the number of bushels devoured by rats, and the test for a plague. A plague occurs when \(\mathrm{R}=1\), thus avoiding the complications caused by " 1 PEOPLE" entering the city.

\title{
Auto-Display-Changing
}

\author{
Dr. I. S. Logan
}

\section*{Introduction}

The standard ZX80 is supplied with a 4 K ROM and 1 K of memory. There are 22 commands that can be used in the Basic provided in the 4 K ROM. However, there is no command that will cause the display to be shown for a specified length of time before a change is made to show the next display. The advertisements for the 8 K ROM mention a command called PAUSE which is expected to perform this function.

The following program constructs the machine code routine for such a PAUSE command. The actual program occupies about \(1 / 4 \mathrm{~K}\), leaving the programmer a little under \(3 / 4 \mathrm{~K}\) in which he can store his different displays.

The actual displays are constructed using Basic PRINT commands in the version given here, but there is no reason why machine code constructed displays should not be used if greater speed or complexity is required. (See \(S Y N C\), vol. 1, no. 1)

A certain amount of 'flicker' is produced between displays because the routine 'returns to Basic' after the specified time period. This 'flicker' can be eliminated only by remaining in machine code and synchronizing the program perfectly.

\section*{The Theory}

The Screen and Keyboard routine, decimal address 316-437, Hex. address \(013 \mathrm{C}-01 \mathrm{~B} 5\), in the 4 K monitor program

\footnotetext{
Dr. I. S. Logan, 24 Nurses Lane, Skellingthorpe. Lincoln LN6 OTT England. This article is the second in a series.
}
can be considered the dominant routine in the operation of the ZX80.

It is this routine that both reads the Keyboard and produces the display on the TV screen. It therefore follows that this routine cannot be called unless a complete display file has already been constructed.

The routine can be divided into three parts:
Part 1. Update the frame counter.
Part 2. Test the Keyboard for new input.

Part 3. Produce the display of the current display file.

If there is no key being pressed, then the whole routine is executed over and over again. However, if a key is being pressed, then an exit is made from the routine to handle the 'interruption.' This may lead to the cursor being moved, characters being added to the current E line, or the RUNning of a Basic program. As long as the programmer has not created a 'never ending loop,' the Screen and Keyboard routine will eventually be re-entered and a display will again appear on the TV screen.

The flow diagram below illustrates the normal operation of the ZX80.

\section*{The Program}

The program, although fairly simple, is quite difficult to enter. Therefore do it slowly and carefully. SAVE the partly entered program often.
Step 1
Enter the following lines and then SAVE:

The AUTO-DISPLAY-CHANGING program copies most of the Screen and Keyboard routine from the 4 K monitor program into the memory and adds a timing loop so that the display can be held for up to 256 frames, about 5 seconds. The programmer is then able to use this 'new' routine to produce a display on the TV screen.
It is important to emphasize again that a complete display file of 24 lines must be constructed before the routine is called. In the following program the display file is completed by calling the subroutine at line 16. However, this can also be done in machine code if required.

The following flow diagram shows how the ZX80 operates with the 'new' routine:

2 REM 12345678901234567890123456789 01234567890123456789012345678901234 56789012345678901234567890123456789 01234567890123456789012345678901234 4 GO TO 28 6 LET A = USR (16428) 8 CLS

Reserve 134 locations
Do not use all spaces!
\} A will return the Keyboard codes.

From now on NEVER use LIST or HOME.

Step 2
Make the following check:
Enter as a direct command:
PRINT PEEK \(\left(64^{*} 256+199\right)\) \& NEW-
LINE and the value 118 should appear. (This is the 'end of line marker' for line 6 and the correct address must be known.)

Now enter RUN 10 \& NEWLINE. The screen will now display the machine code that has been entered into line 2 and held off the screen.
The correct CHECKSUM is 14421; correct any errors before proceeding.

\section*{Step 4}

Delete all the lines from 10 to 80 (inclusive) by entering the line number and NEWLINE over and over again.

SAVE the program. It should consist of lines \(4-8\) on the screen and line 2 . off the screen.

Step 3
Enter the following lines and then SAVE.
10 LET A \(=16428\)
12 POKE A. 205
14 POKE A +1.59
16 POKE A +2.64
18 POKE A +3.33
20 POKE A +4.199
22 POKE A +5.64
24 POKE A \(+6,34\)
26 POKE A \(+7,38\)
28 POKE A +8.64
30 POKE A +9.96
32 POKE A+10,105
34 POKE A+11.201
36 POKE A +12.205
38 POKE A+13,173
40 POKE A+14.1
42 POKE A \(+15,58\)
44 POKE A +16.43
46 POKE A +17.64
48 POKE A \(+18,61\)
50 POKE A +19.200
52 POKE A +20.50
54 POKE A \(+21,43\)
56 POKE A +22.64
58 FOR I=319 TO 427
60 POKE \(16132+\) I.PEEK (I)
62 NEXT I
64 POKE A + 24.4
66 POKE A+132.135
68 LET T \(=0\)
70 FOR I = A TO A +132
72 PRINT PEEK(I);
74 LET T \(=\) T + PEEK (I)
76 NEXT I
78 PRINT
80 PRINT "CHECKSUM \(={ }^{\prime} ; T\) SAVE.

Step 5
Enter the rest of the Basic program:
10 POKE 16427.255
12 POKE 16421.24
14 RETURN
16 LET A \(=\operatorname{PEEK}(16421)-1\)
18 IF A=0 THEN RETURN
20 FOR A \(=1\) TO A
22 PRINT
24 NEXT A
26 RETURN
28 GO SUB 8
30 REM AUTO-DISPLAY-CHANGING

Call the routine at line 42

The address of the end of line 6

The return address needs to be stored in System Variable 16422 and 16423

Return Keyboard codes in HL register pair.

Call screen production subroutine.

Fetch timer from 16427.
Decrement timer.
Exit if timer is zero.
Restore timer.

Copy most of Screen and Keyboard routine from monitor to the memory.
Adjust timing slightly.
Change a JR value.

Form a CHECKSUM

The program is now complete, so SAVE this version carefully. Remember, never use LIST or HOME.

Initialize timer to 5 seconds.
Create a 24th line so as to give a 'full display.
This routine will complete the display file. It adds the appropriate number of PRINT's to fill the 24 lines.

Initialize timer for 1st display.
Optional REM line.

\section*{Using the program}

It is not really the author's intention in this article to describe at any great length just how the program can be used. The following examples are given so that the reader can start to see for himself how different problems are tackled.

\section*{Simple display changing}

Enter the lines;
100 PRINT "DISPLAY ONE"
196 GO SUB 16
198 GO SUB 6
```

200 PRINT "DISPLAY TWO"
2 9 6 GO SUB 16
298 GO SUB }
3 0 0 GO TO 100
9 9 6 ~ C L S ~
998 STOP
RUN

```

As long as the program is entered correctly, the first display should appear on the screen for five seconds. Then the screen will 'flicker' and the second display will appear. Because of the LOOP BACK the displays will alternate forever!
Note that all the keys are active. Pressing any key, except BREAK, will cause a switch to the next display. The BREAK key is still active as it is tested at the end of each Basic line. This key can therefore be used to 'exit' from the LOOP.

\section*{The largest possible display}

The following lines show that there are about 550 locations still available for the displays in the standard 1 K ZX80.

100 FOR I=1 TO 550
102 PRINT "**";
104 NEXT I
106 PRINT
196 GO SUB 16
198 GO SUB 6
200 GO TO 198
996 CLS
998 STOP
In the above program the LOOP BACK is used in a different way. By repeating line 198 over and over again, the current display file is used again without any changes.

\section*{Find the number}

The following game shows how the A variable returns the keyboard code.

In the program a random number in the range \(1-5\) is the first generated. Then the keys that are pressed by the player are tested for the correct key value.

Each time a key is pressed the score is incremented. At the end of each 5 second period without a key stroke the score is also incremented.
100 REM FIND THE NUMBER
102 LET N = RND(5)
104 LET \(\mathrm{N}=521^{*}(\mathrm{~N}=1)\) OR \(1033^{*}(\mathrm{~N}=\)
2) OR \(2057^{*}(\mathrm{~N}=3)\) OR \(4105^{*}(\mathrm{~N}=4) 0\) R 8201* \((\mathrm{N}=5)\)
106 LET T=1
108 GO TO 204
200 PRINT "SORRY. TRY AGAIN"
202 LET T \(=\mathrm{T}+1\)
204 PRINT
206 PRINT "I KNOW THE KEY. DO YOU? (1-5)"
296 GO SUB 16
298 GO SUB 6
300 IF NOT \(\mathrm{A}=\mathrm{N}\) THEN GO TO 200
302 PRINT "WELL DONE"
304 PRINT "YOU TOOK"'T:" GO"; 306 IF NOT T \(=1\) THEN PRINT "ES"
308 PRINT
310 PRINT "PRESS NEWLINE TO RES TART"
312 INPUT AS
314 IF NOT AS \(=\cdots \cdots\) THEN STOP
316 CLS
318 RUN

\section*{The Key values}

The Screen and Keyboard routine scans the keyboard and returns in the BC register pair a KEY VALUE that is different for every stroke. As there are 78 keystrokes, there are 78 different key values.

In the 'Build up an E-line' routine these key values are changed to the range 1 to 78 ; then the look up table is used to find the correct ZX80 character codes.

However, in order to make the AUTO-DISPLAY-CHANGING program as short as possible, the conversion of key values to character codes has not been included.

The following program can be used to show the KEY VALUES:
```

100 REM KEY VALUES
102 LET A =0
104 PRINT A
196 GO SUB 16
198 GO SUB }
200 GO TO 104

```

\section*{Conclusion}

Many other kinds of programs can be written using the AUTO-DISPLAYCHANGING routine. The author has a very nice digital clock, but the 'flicker' is a little annoying. Much of the background work for this article is discussed in the author's The ZX80 Companion which contains a more elementary version of this particular program.

\section*{Looking inside the ZX80}

\section*{by Harley Shanko}

Since the materials supplied with the ZX80 had no machine language examples, I decided to write routines to let Basic show me the ROM contents. These routines resulted from that effort; later they were combined to permit switching from one mode to another.

The object code routine OBJ allowed me to generate a 'hand-disassembled' listing of the 4 K ROM, and SYMB to see the 'printables'-this allows locating the Basic statement look-up table, single key codes expansion, and the 'integral function' expressions. CODE allows a look into the details of how the Basic lines are stored (note: constants are stored in decimal form as entered, unlike some Basic's) and permits easy counting of the number of bytes consumed by each line.

Use of the program is straightforward. After RUN, the selection is displayed. The operation and keyboard activity are as follows:

Selection: Enter number (1 to 3) of desired listing (plus NEWLINE); the address is then requested-enter decimal value of address beginning.
Continue

Exit: Hit NEWLINE.
Change: To change selection, hit any other key (except SPACE or NEWLINE) plus NEWLINE to return to selection mode. After listing and cursor returns, hit SPACE then NEWLINE twice.

The display is in standard format, with the address in hex at the left and data contents to the right. OBJ presents a cluttered display. Since the program uses

\footnotetext{
Harley Shanko, 15025 Vanowen, \#209, Van Nuys, CA 91405.
}
decimal) for the keyboard matrix decoder, 00 BD (189) for the single-key code expansion, 0BC0 (3008) for the integral function decoder, or at RAM at 4028 (16424) to see this program as stored by the ZX80. Use of CODE at \(4028+\) details exactly each byte of the program.
about \(1 / 2 \mathrm{~K}\) and the displayed information uses 336 bytes, formatting with spaces between bytes (hex-pairs) car only be done by either displaying fewer lines or using OBJ as a stand-alone program to increase readability. SYMB is better as it is textual. Look at ROM beginning at 006C (108
```

```
z\times80--10oking inside the z*80
```

```
z\times80--10oking inside the z*80
 ZXEO (IK) MEMOFIY LISTER
 ZXEO (IK) MEMOFIY LISTER
 10 PRINT " }1=\mathrm{ OBJ 2=SYMB }3=\textrm{CLDE
 10 PRINT " }1=\mathrm{ OBJ 2=SYMB }3=\textrm{CLDE
 15 REM BY H SHANKD-22FEBE1
 15 REM BY H SHANKD-22FEBE1
 20 INPUT 5
 20 INPUT 5
 22 CLS
 22 CLS
 2 4 ~ I F ~ S > 3 ~ T H E N ~ G O ~ T O ~ 1 0 , ~
 2 4 ~ I F ~ S > 3 ~ T H E N ~ G O ~ T O ~ 1 0 , ~
 26 PRINT "ADDR="
 26 PRINT "ADDR="
 28 INPUT N
 28 INPUT N
 30 LET P=S*100
 30 LET P=S*100
 5 2 ~ C L S ~
 5 2 ~ C L S ~
 54 FOR A=1 TO 16
 54 FOR A=1 TO 16
 5 6 ~ I F ~ S = 3 ~ T H E N ~ F O R ~ A = 1 ~ T O ~ 2 0 ~
 5 6 ~ I F ~ S = 3 ~ T H E N ~ F O R ~ A = 1 ~ T O ~ 2 0 ~
 60 LET }X=
 60 LET }X=
 G2 GO SUB 8O
 G2 GO SUB 8O
 6 4 ~ P R I N T ~
 6 4 ~ P R I N T ~
 6G GO SUE F
 6G GO SUE F
 6 8 ~ P R I N T ~
 6 8 ~ P R I N T ~
 7 0 ~ N E X T ~ A ~
 7 0 ~ N E X T ~ A ~
 7 2 \text { INPUT Nक}
 7 2 \text { INPUT Nक}
 74 IF N$="" THEN GO TO 52
 74 IF N$="" THEN GO TO 52
 75 IF N$=" " THEN STOP
 75 IF N$=" " THEN STOP
 76 GO TO 10
 76 GO TO 10
 80 PRINT CHR$ (x/4096+2B)
 80 PRINT CHR$ (x/4096+2B)
 82 LET }\textrm{x}=\textrm{x}-(x/4096)*409
 82 LET }\textrm{x}=\textrm{x}-(x/4096)*409
 84 PRINT CHR$ (}x/256+28)\mathrm{ ;
 84 PRINT CHR$ (}x/256+28)\mathrm{ ;
 86 LET }\textrm{x}=\textrm{x}-(\textrm{x}/256)*25
 86 LET }\textrm{x}=\textrm{x}-(\textrm{x}/256)*25
 88 FRIINT CHR$ (}x/16+28)\mathrm{ ;
 88 FRIINT CHR$ (}x/16+28)\mathrm{ ;
 90 LET }x=x-(x/16)*1
 90 LET }x=x-(x/16)*1
 9 2 \text { PRINT CHRक (} x + 2 8) \text { ;}
 9 2 \text { PRINT CHRक (} x + 2 8) \text { ;}
 9 4 ~ R E T U F N
 9 4 ~ R E T U F N
 95 LET X=FEEK (N)
 95 LET X=FEEK (N)
 97 GO TO 88
 97 GO TO 88
100 FOR L=1 TO B
100 FOR L=1 TO B
110 GO SUE 95
110 GO SUE 95
120 GO TO 250
120 GO TO 250
200 FGF: L=1 TG 16
200 FGF: L=1 TG 16
210 LET }X=F=PEEK (N
210 LET }X=F=PEEK (N
220 IF }x>127\mathrm{ THEN LET }x=x-12
220 IF }x>127\mathrm{ THEN LET }x=x-12
230 IF }x<12\mathrm{ OR }x>63\mathrm{ THEN LET }x=
230 IF }x<12\mathrm{ OR }x>63\mathrm{ THEN LET }x=
240 PFIINT CHRक (X)
240 PFIINT CHRक (X)
250 LET N N=N+1
250 LET N N=N+1
260 NEXT L
260 NEXT L
270 RETUFN
```

270 RETUFN

```
300 GO SUB 95
310 FRINT, CHRक (PEEK (N)) ;
330 RETURN
```

```
Selection
Test if selection OK
Enter beginning address now
Set selection GOSUB address
Set #lines to 16
 or 20 : ines
Get address
 and display it
 pluS SFACE
Go to selection subroutine
 do "CRLF" for each line
 until done
Get keyboard entry
 test if "continue"
 or "stop"
Otherwise is "new selection"
4-hex entry for decimall-hex conv.
 calculate next hex digit
3-hex entry
2-hex entry
1-hex entry
Get byte at address
Set for B bytes/line
 get byte
 and loop until done
Set for 16 char/line
Get byte
 remove if "inverted videa"
 exclude non-textual char
Display char.
Increment address
 and loop until done
Get byte at address, display
 do SPACE and display CODE
Eet next acdress
```

A byte-search routine BYT was used
before disassmebling the ROM to locate data, such as Z80 unconditional CALL, JumP, RETurn addresses, although it will search for any byte. Unfortunately, adding BYT, like most other routines to the program, will cause OBJ and SYMB selections to bomb-out with " 4 " type errors, not enough memory, before completing the display. However, CODE and BYT will still be usable. An alternate solution is to make a second file by deleting a selection and its routine and substituting BYT. To add BYT, follow printout labeled Figure 1.

Another routine generated was a ZX80 dot-matrix routine DOT to study the characters at an $8 x$ scale; the characters are $7 \times 6$ in an $8 \times 8$ box and DOT forms a SPACE or inverted one for each dot in the character. As a fifth selection, modify the program so that printout will appear as in Figure 2.

Line 520 displays a 'period' for the character dot location where the dot should be OFF; this provides a reference for the character location in the box. For a true

Figure 1.
change

Figure 2.
$-{ }^{-2}$
add
add

```
Chance }\quad10\mathrm{ add ...5=BYT...
```

Chance }\quad10\mathrm{ add ...5=BYT...
24 chanqe...S>3 (or 4)... to 5>5..
24 chanqe...S>3 (or 4)... to 5>5..
add
add
add So0 LET X=FEEK (N) (or 4)... to S>5....
add So0 LET X=FEEK (N) (or 4)... to S>5....
S00 LET x=FEEK (N)
S00 LET x=FEEK (N)
520 LET C=27
520 LET C=27
520 LET C=27 [HEN SO TO 560 Test ms bit
520 LET C=27 [HEN SO TO 560 Test ms bit
540 LET C=128 If ONE, invert
540 LET C=128 If ONE, invert
550 LET X=x-128 Remove msb, if
550 LET X=x-128 Remove msb, if
560 LET }x=x*22 Do left shif
560 LET }x=x*22 Do left shif
560 LET X=x*2
560 LET X=x*2
590 FRINT CHRक(C):
590 FRINT CHRक(C):
585 LET N=N+1
585 LET N=N+1
5 9 0 ~ F E T U R N ~
550 LET X=X-128 Remone, invert
550 LET X=X-128 Remone, invert
Display dot/no dot
Display dot/no dot
Loop until done
Loop until done
Then incr
Then incr
Then incr. address

```
Then incr. address
```

```
10 add ... 4=BYT... to print statement
```

10 add ... 4=BYT... to print statement
24 change ...S>3... to ...S>4...
3G IF S<4 THEN GO TO S2
3G IF S<4 THEN GO TO S2
38 PRINT "BYTE=";
38 PRINT "BYTE=";
4 0 ~ I N F U T ~ B ~
4 0 ~ I N F U T ~ B ~
42 GO SUF 410
42 GO SUF 410
400 LET N=N+1
400 LET N=N+1
410 IF NOT FEEK (N)=B THEN GO TO 400 Loop until match
410 IF NOT FEEK (N)=B THEN GO TO 400 Loop until match
410 IF NOT FEEK (N )=B THEN GO TO 400 Loop until match
410 IF NOT FEEK (N )=B THEN GO TO 400 Loop until match
56 change ...S>3... to ...S>4...

```
56 change ...S>3... to ...S>4...
```

as in Figure 2.
-
representation, change 520 to LET C $=0$. If a 0,1 type (binary) display is desired, change $\mathrm{C}=28$ at 520 and $\mathrm{C}=29$ at 540 .

The ZX80 dot matrix is located at 0E00
through OFFF; thus to see the characters enter decimal 3584 ( $=0 \mathrm{E} 00$ ). Because of their size, only two characters per display are possible.

## Blank Cassettes

The quality of cassette tape used to save and load programs is an important factor in getting the programs to run. Tape quality for computers is measured differently from quality for audio tape. The tape must be capable of sending to the computer the electronic signals of the program without transmitting extraneous noises that could interfere with the ability of the computer to load the tape.

Our blank cassettes are tested and recommended for computer use. C-10 cassette, 5 min . per side, blank label on each side in a Norelco hard plastic box. [0010]\$1.25 each.

## Head Cleaner

After hours of use, the read/write head in a cassette recorder will pick up minute particles of tape oxide. This dirt will hardly be noticable in dictation or music. But it is very noticable in computer use. One dropped bit in 16,000, and the program won't load
Help keep your recorder in top shape with our non-abrasive head cleaner. It consists of 18 inches of stiff cleansing fabric-in a standard cassette sheil. One 10 -second pass every 40 hours of use will keep your heads as good as new. [0011] $\$ 2.00$. Send payment plus $\$ 1.00$ Shipping per order to:


39 East Hanover Avenue Morris Plains, NJ 07950

## Find ZX-80 Owners

Advertise in SYNC, the magazine exclusively dedicated to the Sinclair ZX-80 and The MicroAce. Call or write for details and a rate card. Let SYNC readers know who you are.

SYNC
39 E. Hanover Ave.
Morris Plains, New Jersey 07950

## R.F. SHIELD

(CUTS DOWN T.V. interference)
For the MICRO-ACE
Easy to install kit with complete instructions. ZX80 owners! if your shield is damaged, the kit will work for you. (Please specify MICRO-ACE or ZX80) Send $\$ 5.00$ U.S.A. ( $£ 2.5$ ) to:

## OUTBOUND ENGINEERING

P. O. Box 218

Chandler, Texas 75758
U. S. A.

Why wait 2 or 3 weeks for your check to clear? Send Cash or Money Order. Texas residents add $5 \%$ Sales Tax.

## INVENTIVE PROGRAMS

## FOR THE ZX8O $4 K$ ROM 1 K RAM

Games, subroutines, and teaching aids in 4 K BASIC and MACHINE CODE. All listings include statement/ subroutine logic and 8 K ROM/16K RAM appendix.

PRICE: $\$ 1.00$ per program listing (minimum order 10 , plus $\$ 2.50 \mathrm{~S} \& \mathrm{H}$ )

PARTIAL LIST * $(4 K / 1 K)$

* FLIP-A-COIN
* 1 KEY BANDIT
$\star$ TURRET GUNNER * FOIL FENCING
* ZX80. BASIC TEST * BANGIFOR 1
* BLACKJACK
* EASTER DATE
* FIBONACCI SEQUENCE * STATE CAPITALS TEST
* COORD GRAPHICS
* MAChine code displar
* BARRAGE
* GUillotine
* ACEY-DUCEY ॥
* KEYBOARD GRAPHICS
* LINE RENUMBER * 81 BOXES

TO ORDER
Specify programs wanted and enclose payment.

ZETA SOFTWARE
P.O. BOX 3522 GREENVILLE, S.C. 29608

Complete list sent with your order, or send SASE for FREE list and order blank.

# puzzles \& problems 

## A Building Problem

ur first problem today is an interesting test in construction. In the illustration at the right we see a triangle that has been constructed using three matchsticks and three balls of clay. In our puzzle you are given nine matchsticks and as much clay as you need to connect them together in such a manner as to form seven equilateral triangles. You are not allowed to cross or break the matchsticks. Merlin will be by shortly to inspect your construction.

## The Lucky Number


any persons have what they consider a "lucky" number. Show such a person the row of figures subjoined - $1,2,3,4,5,6,7,9$ (consisting of
 the numerals from 1 to 9 inclusively, with the 8 only omitted) - and inquire what is his lucky or favorite number. He names any number he pleases from 1 to 9 , say 7 . You reply that, as he is fond of sevens, he shall have plenty of them, and accordingly proceed to multiply the series given above by such a number that the resulting product consists of sevens only.

Required, to find for each number that may be selected the multiplier which will produce the above result (From Merlin's Puzzler)

## The Puffer-Belly Problem



Conrail passenger and freight train out of Hoboken, New Jersey, was heading west towards Morristown, home of Creative Computing, at a speed of 45 miles per hour. Along the way the train meets and is passed by a Dover local train headingeast at 36 miles per hour. An alert passenger on the Conrail train, for some reason unknown to us, clocks the Dover train as it passes by him. He finds that it takes exactly 6 seconds for the Dover train to pass by his window. Using the information above, can you calculate the length of the Dover train?


## The story behind the two best selling computer games books in the world.

# Computer Games 

by David H. Ahl

Everybody likes games. Children like tic tac toe. Gamblers like blackjack. Trekkies like Star Trek. Almost everyone has a favorite game or two.

## It Started in 1971

Ten years ago when I was at Digital Equipment Corp. (DEC), we wanted a painless way to show reluctant educators that computers weren't scary or difficult to use. Games and simulations seemed like a good method.

So I put out a call to all our customers to send us their best computer games. The response was overwhelming. I got 21 versions of blackjack, 15 of nim and 12 of battleship.
From this enormous outpouring I selected the 90 best games and added 11 that I had written myself for a total of 101. I edited these into a book called 101 Basic Computer Games which was published by DEC. It still is.
When I left DEC in 1974 I asked for the rights to print the book independently. They agreed as long as the name was changed.

Contents of Basic and More Basic C	mputer Games (right) puter Games (below).	Introduction   The Basic Language Conversion to Other Basics   Acey Ducey   Amazing   Animal   Awari	Hi-Lo   High I-Q   Hockey Horserace Hurkle Kinema King Letter
Artillery-3	Life Expectancy	Bagels	Life
Baccarat	Lissajous	Banner	Life For Two
Bible Quiz	Magic Square	Basketball	Literature Quiz
Big 6	Man-Eating Rabbit	Batnum	Love
Binary	Maneuvers	Battle	Lunar LEM Rocket
Blackbox	Mastermind	Blackjack	Master Mind
Bobstones	Masterbagels	Bombardment	Math Dice
Bocce	Matpuzzle	Bombs Away	Mugwump
Boga II	Maze	Bounce	Name
Bumbrun	Millionaire	Bowling	Nicomachus
Bridge-It	Minotaur	Boxing	Nim
Camel	Motorcycle Jump	Bug	Number
Chase	Nomad	Bullight	One Check
Chuck-A-Luck	Not One	Bullseye	Orbit
Close Encounters	Obstacle	Bunny	Pizza
Column	Octrix	Buzzword	Poetry
Concentration	Pasart	Calendar	Poker
Condot	Pasart 2	Change	Queen
Convoy	Pinball	Checkers	Reverse
Corral	Rabbit Chase	Chemist	Rock, Scissors, Paper
Countdown	Roadrace	Chief	Roulette
Cup	Rotate	Chomp	Russian Roulette
Dealer's Choice	Safe	Civil War	Salvo
Deepspace	Scales	Combat	Sine Wave
Defuse	Schmoo	Craps	Slalom
Dodgem	Seabattle	Cube	Slots
Doors	Seawar	Depth Charge	Splat
Drag	Shoot	Diamond	Stars
Dr. $Z$	Smash	Dice	Stock Market
Eliza	Strike 9	Digits	Super Star Trek
Father	Tennis	Even Wins	Synonym
Flip	Tickertape	Flip Flop	Target
Four In A Row	TV Plot	Football	3-D Plot
Geowar	Twonky	Fur Trader	3-D Tic-Tac-Toe
Grand Prix	Two-to-Ten	Golf	Tic Tac toe
Guess-It	UFO	Gomoko	Tower
ICBM	Under \& Over	Guess	Train
Inkblot	Van Gam	Gunner	Trap
Joust	Warfish	Hammurabi	23 Matches
Jumping Balls	Word Search Puzzle	Hangman	War
Keno	Wumpus 1	Hello	Weekday
L Game	Wumpus 2	Hexapawn	Word

## Converted to Microsoft Basic

The games in the original book were in many different dialects of Basic. So Steve North and I converted all the games to standard Microsoft Basic, expanded the descriptions and published the book under the new name Basic Computer Games.
Over the next three years, people sent in improved versions of many of the games along with scores of new ones. So in 1979, we totally revised and corrected Basic Computer Games and published a completely new companion volume of 84 additional games called More Basic Computer Games. This edition is available in both Microsoft Basic and TRS-80 Basic for owners of the TRS-80 computer.
Today Basic Computer Games is in its fifth printing and More Basic Computer Games is in its second. Combined sales are over one half million copies making them the best selling pair of books in recreational computing by a wide margin. There are many imitators, but all offer a fraction of the number of games and cost far more.
The games in these books include classic board games like checkers. They include challenging simulation games like Camel (get across the desert on your camel) and Super Star Trek. There are number games like Guess My Number, Stars and Battle of Numbers. You'll find gambling games like blackjack, keno, and poker. All told there are 185 different games in these two books.

Whether you're just getting started with computers or a proficient programmer, you'll find something of interest. You'll find 15 -line games and 400 -line games and everything in between.

The value offered by these books is outstanding. Every other publisher has raised the price of their books yet these sell for the same price as they did in 1974.

## Moneyback Guarantee

Examine one or both of these books and key some games into your computer. If you're not completely satisfied we'll refund the full purchase price plus your return postage.

Basic Computer Games costs only $\$ 7.50$ and More Basic Computer Games just $\$ 7.95$ for either the Microsoft or TRS-80 edition (please specify your choice on your order). Both books together are $\$ 15$. Send payment plus $\$ 2.00$ shipping and handling to Creative Computing Press, Morris Plains, NJ 07950. Visa, MasterCard and American Express orders should include card number and expiration date. Charge card orders may also be called in toll-free to 800-631-8112 (in NJ 201-540-0445).
Order today to turn your computer into the best game player on the block.

## creative GORpatirg

Morris Plains, NJ 07950
Toll-free 800-631-8112
(In NJ 201-540-0445)

## Mastermind ${ }_{\text {кк }}$

## Raymond Fowkes

This game is played much like the original board version. The computer selects a code of four colors from a possible six: red. orange, yellow, green, blue, and white (duplicates allowed). It is now up to you to find, in nine moves or less. the exact color and position of each element of the code by entering four colors of your choice. first letters only, one at a time. The computer then compares the guess with the pre-selected code, first for black pegs and then for white pegs. The pegs are displayed next to the corresponding guess. A black peg means a right color in the right position, a white peg means a right color in the wrong position.

For example. suppose the hidden code was R B W B, and the first guess was R G B O. You would be given one black peg and one white peg because 'red' is in the right position and 'blue' is correct but in the wrong position.

These features make this program superior to many other versions of this game.

The game continues until 1) the code is broken and "uncovered." 2) "Q" is entered. signifying 'quit.' or 3) all nine tries are used.

## Conversion

This program is designed for a 2 K system. but can be reduced to 1 K by doing the following:

Delete lines 10-140, 250-320, 720-770.

## Change lines:

```
3SO FRINT "ROYEHW " (S sp.)
480 POKE C+214+2*E, B (E)
560 FOOKE C+20S+E,9
660 POKE C+20S+E, 128
800 FOKE C}+\textrm{D}*20+2*\textrm{B}+11,
810 FOKE C+D*20+2*B+12,A(B)
830 FOKE C+D*20+19,0
840 STOF
```

[^1] 93210.

```
 5 RANDOMIZE
 10 FRINT ," MASTERIMIND" (Atter" leave 2 sp.)
 0 FRINT
 O FRINT " I WTLL SELECT A CQDE OF FQUR" (2 SP.)
 4 0 ~ P R I N T ~ " C O L O R S ~ A N D ~ Y O U ~ M U S T ~ T F Y ~ T O ~ B R E F A K ~ I T ~ U S I N G ~ T H E ~ C L U E S ~ I ~ G I V E ~ Y O U . " ~
 O FRINT
 60 FRINT " A BLACK PEG MEANS A RIGHT" (S sp.)
 70 PRINT " COLOF IN THE RIGHT FQSITION." (1 Sp.)
 75 PRINT
 BO FFINT " A WHITE PEG MEANS A RIGHT" (2 gQ.)
 85 PRINT " COLOF IN THE WFONG POSITION." (1 sp.
 50 FRINT
 OO FRINT " YOU HAVE q TRIES." (6 Sp..)
 110 PRINI
 115 PRINT " INPUT Q TO QUIT AND/QR"," F TO PLAY AGAIN. " (4 SP. and 7 Sp.)
 125 PRINT " TYPE IN F TO FLAY." (6 5P.)
 130 INFUT AS
 135 IF NOT A&="P" THEN STOF
 140 CLEAR
 150 DIM A(3)
 160 DIM B (3)
 1 7 0 \text { DIM C(3)}
 180 FOF E=0 TO 3
 190 LET A (B)=FND (G)
2 0 0 ~ I F ~ A (B) = 1 ~ प F ~ A (B) = 2 ~ O R ~ A ~ (B) = 3 ~ T H E N ~ L E T ~ A ~ (B) = A ~ (B) ~ * B + 3 6
210 IF }A(B)=4\mathrm{ THEN LET }A(B)=3.
220 IF A(E)=5 OFi A(E)=6 THEN LET A(E)=A(E)*7+20
230 NEXT B (Generate code)
250 CL.5
300 PRINT "B = BLUE }Y=Y\mathrm{ YELLOW }O=\mathrm{ ORIANGER = RED G = GREEN W = WHITE
310 FRINT " = BLACK PEG",CHRक(128);" = WHITE PEG G = GREEN W = WHITE
M20
330 FRINT," "; Shift A)
340 FOF F=1 TO 11
360 PRINT CHR:里 (12B);
370 NEXT F
380 FOR C==1 T0 9
390 FFINT
4 0 0 ~ F R I N T ~
410 FRINT 10-C,," ";
4 2 0 ~ N E X T ~ C ~
430 FOR D=1 TO 9
440 FOR E=0 TO 3
450 INFUT A生
460 LET E (E)=CODE (A$)
470 GO SUB 900
480 FOKE C + $10+2*E, B (E)
490 IF Aक="Q" THEN GO TD 720
500 LET C(E)==A(E)
510 NEXT E
S20 LET E=O
53O FOR B=O TL 3
5 4 0 ~ I F ~ N O T ~ E (B) = C (B) ~ T H E N ~ E O ~ T O ~ 5 9 0 ~ (C h e c k ~ f o r ~ b l a c k ~ p e g))
550 LET E=E+2
560 POKE C+299+E,9
570 LET B (B)=0 (Destray matching pairs)
580 LET C C (B)=1
5 9 0 ~ N E X T ~ B ~
6 0 0 ~ I F ~ E = 8 ~ T H E N ~ G U ~ T O ~ 7 8 0 ~
610 FOF B=O TO S
620 FOF: F=0 TO $
630 IF C(E)<2 THEN GO TO }70
6 4 0 ~ I F ~ N O T ~ C (B) = B (F) ~ T H E N ~ G O ~ T O ~ 6 9 0 ~
6 5 0 ~ L E T ~ E = E + 2 ~ (C h e c k ~ f o r ~ w h i t e ~ p e g s) ~
660 POKE C+279+E,128
670 LET B(F)=0
680 60 T0 700
6 9 0 ~ N E X T ~ F F
7 0 0 ~ N E X T ~ B ~
700 NEXI B
7 2 0 \text { LET A } = = " \text { TOO BAD"}
730 FOF: B=97 TO 103
740 LET A$=TLक(A$)
750 GO SUB 900
760 PDKE B+C+D*20, CODE (A$)
7 7 0 \text { NEXT B}
780 GO SUB 900
790 FOR E}=0\mathrm{ TO 3
800 POKE C+D*20+2*E+107,0
810 POKE C+D*20+2*B+108,A(B)
820 NEXT E
830 POKE C+D*20+115,0
840 GO TO 130
900 LET C=FEEK (16396) +PEEK (16397)*256-D *20
810 RETURN
```

[Instructions]
Sample Runs (2K)
MASTERMIND
I WILL SELECT A CODE OF FOUR
COLORS AND YOU MUST TRY TO
BREAK IT USING THE CLUES I
GIVE YOU.
A BLACK PEG MEANS A RIGHT
COLOR IN THE RIGHT POSITION.

## A WHITE PEG MEANS A RIGHT

 COLOR IN THE WRONG POSITION.YOU HAVE 9 TRIES.
INPUT Q TO QUIT AND/OR P TO PLAY AGAIN.

TYPE IN P TO PLAY.

$$
\begin{aligned}
& \mathrm{B}=\text { BLUE } \mathrm{Y}=\text { YELLOW } \mathrm{O}=\text { ORANGE } \\
& \mathrm{R}=\text { RED } \mathrm{G}=\text { GREEN } \mathrm{W}=\text { WHITE } \\
& \text { = BLACK PEG } \square=\text { WHITE PEG }
\end{aligned}
$$

Y R B W
[Code is only "uncovered" after it is guessed, all turns are used, or a quit

9
8
7


"It says the odds of you making that hand are 2,385,000 to 1, and the odds are 3 to 2 that a nut like you will try for it."

```
\(\mathrm{B}=\) BLUE \(\mathrm{Y}=\) YELLOW \(\mathrm{O}=\) ORANGE
\(\mathrm{R}=\) RED \(\mathrm{G}=\) GREEN \(\mathrm{W}=\) WHITE
 틀 BLACK PEG \(\quad\) = WHITE PEG
```

TOO BAD

9
8
$7 \quad$ Q
[Quit|
$6 \square \square \square \mathrm{BGOR}$
$5 \square \square \square B R G O$
4

3
R R R G

2
OOOB
B B B Y
9:135

Sample Runs ( 1 K )


## Graphics Surprises

James H. Parsons

When we combine the uncertainty of the ZX 80 's randomizing feature with its graphics capacities, we have the ingredients for a lot of fun. For example, the Crazy Quilt program uses only two instructions, yet it fills the screen with a zany tangle of symbols and spots:

## Crazy Quilt

10 PRINT CHRS(RND(9)) + 2);
20 GO TO 10
Using "( $(\operatorname{RND}(9)+2)$ " to assign the characters to be printed insures that only the keyboard graphics symbols, CHRS(2) through CHRS(11), will be selected; and it avoids the blank space. $\operatorname{CHRS}(0)$, and the null string, CHRS(1). By changing the range of numbers being randomly selected, we can fill the screen with letters, numbers. punctuation marks, inverse characters, or any combination of these so try numbers other than 9 and/or 2.

## Walls and Dikes

A more challenging application of graphics and randomizing is found in "Walls and Dikes." This program generates a maze in which the configuration of the baffles is fixed randomly within parameters which the player can set. In order to make spaces for traveling within the maze. the program alternates rows of "walls" with rows of "dikes." The wall rows are solid with just a few randomly-placed spaces to pass through. The dike rows are completely open, except for several randomlyplaced dikes. To keep maze travelers from sneaking around the ends of wall lines. there is a $19 \times 23$-space frame around the whole maze. A randomly-placed opening in the top of the frame lets maze travelers in. In the bottom of the frame is a randomly-located treasure marked by a \$.

James H. Parsons. 2575 Easteleft Dr., Columbus. OH 43221 .

The prospective maze traveler enters the densities (from 1 to 100) of the walls and dikes. When the computer draws a maze according to the densities specified, the maze traveler must try to find a way from the door at the top of the frame through the maze to the treasure at the bottom. Relatively "thin" densities of walls and dikes (for example, $\mathrm{W}=10, \mathrm{D}=5$ ) present no challenge, while extremely dense configurations (for example, $\mathrm{W}=95, \mathrm{D}=65$ ) cease to be passable mazes at all. Densities of about $W=88$ and $D=9$ seem to give the most satisfactory results. At these
densities, some of the mazes produced will be ridiculously easy to get through. while some others will be impassible. Most will be somewhere in between.

The blank line just above the bottom of the frame avoids the frustration of finding a wall or dike sitting right on top of the treasure, and sealing it in. With the blank line, the treasure is always accessible from some part of the maze.

Try experimenting with different densities for the walls and dikes. Try using different symbols for the parts of the maze.

NEWL INE


Typical Run of＂Walls and Dikes＂
The player starts the program running by pressing RUN and NEWLINE and the display on the screen says：

WALLS AND DIKES WALL DENSITY？
The player enters a number from 1 to 100 ，indicating the percentage of space to be filled in by solid horizontal walls．
DIKE DENSITY？

The player enters a number from 1 to 100 indicating the desired percentage of space to be filled in by dikes．

The screen goes blank for a few seconds． and then a maze appears．The maze is framed on all four sides，but there is a gap in the top part of the frame for the player to＂enter＂by，and a dollar sign in the bottom part of the frame－the＂treasure．＂

The location of the door and treasure is determined randomly，as is the distribution of walls and dikes，once their densities have been set．Under the frame is printed：

## NEWLINE

When the player presses NEWLINE． the maze is replaced by：
WALL DENSITY
The game begins again．

```
 10 FFINT "WALLS AND DIKES"
 20 FRINT "WALL DENSITY?"
 SO INFUT W
 4O FFINT "DIKE DENSITY?"
 5 O ~ I N F U T ~ D ~
 6 0 ~ C L E S
 70 LET A串=CHFक (128)
 80 LEET B多=CHFF(0)
 90 EO SUE.1000 (Makes the top of the frame.)
 100 FOF C=1 TO 8 (100-250 generates & wall line/dike
 lime pair=.)
 110 FFTNT A*⿱丶万⿱⿰㇒一十凵⿴囗⿱一一小心
 120 FOF K=1 TO 21 (120-160 generates dike limes.)
 130 LET E=FND (100)
 140 TF ECD THEN FRINT Aक:
 15O IF NOT E<D THEN PRINT B&:
 160 NEXT K
 170 FRTNT Aक
 180 FFINT A$!
 1 9 0 ~ F o r ~ G = 1 ~ T 0 ~ 2 1 ~
 (Rught side of frame for dike 2imes.)
 (Left side of freme for wall Lines,)
 (190-2SO generates wal1 I Ines.)
 OOO LET HWFND (100)
 210 IF NOT H&W THEN FFINT EW:
 22O IF H&W THEN FRZNT As:
 23O NEXTG G
 240 FFINT Aक
 250 NEXT C
 260 FFTNT A奚
 270 FOF L=1. TO 21.
 side ot frame for blank lume.
 (270-290 generetes the blank I ine..)
 280 FRINT Eक:
 290 NEXT L.
 300 FRTNT A事
 310 LETET B%="5"
 उ20 60 SUE 1000
 SSO FRINT "NEWLINE" (FEminds player how to get a replay.)
 340 INFUT Z.⿻⿳一一𠃌丨心
 30 CLS
 360 GO TO 20
1000 FFINT A⿻三丨口
 (Keeps door/treasure out of left corners.)
1 0 1 0 ~ L E T ~ A = F N D (2 1) ~ (C h o o s e s ~ l o c e t i o n ~ o f ~ d o o r / t r e a c u r e .) ~
1020 FOF B=1 TO 21
10SO IF NOT B=A THEN FFRNT A辛;
1040 IF E=A THEN FFINT B多: (Frints the door/treasure.)
1050 NEXT B
1 0 6 0 \text { FRINT A㐁 (Keeps door/treasure out of righic corners.)}
1070 RETUFN
```


# Endangered Species <br> Thirty-six different issues and not one has yet learned to breed in captivity. Their days in 

 our warehouse are limited. Could you provide a good home for a magazine? In exchange, you're assured hours of reading pleasure. And, before they disappear, find the missing link in your own collection.The applications, programming techniques, simulations, problems, commentary, articles and fiction are practically timeless. Not only that, but the earlier issues are actually increasing in value.
Prices are $\$ 2.50$ each for all issues after March 1980. $\$ 2.00$ each for all other issues. $\$ 5.00$ for three, $\$ 15$ for ten. Postage is $\$ 1.00$ for up to 3 issues, $\$ 2.00$ for 4 or more. Best bet is the Super Special: One of everything we have -36 magazines in all-for only $\$ 50$ post paid.

## creative computirg

39 E. Hanover Avenue Morris Plains, NJ 07950

Vol. 3, No. 4-July/Aug 1977 Four Dynamic Games: Eliza (in
Basic!). Bocce. Backgammon and UFO. First Part of Dwyer's ". D -Hour Course in Basic." Writing Your Own CAI: "Structuring the Lesson to the student." Interview with Lee Felsenstein. Designer of the SOL , and several machines since !). Computers in MediCine and Health Care. Evaluations: Holmes and Charles Babbaze:


Vol. 4, No. 4-Jul/Aug 1978
Features on Business Computing and Word Processing: Special Section on Interfacing Your Computer to the Outside World: Three Perspectives on Video Games: ROM Section: High Resolution Graphics for Apple II: GAMMON and EVILK Motor Cycle Jump Game Programs. Evaluations: Pet: Apple II: Atari Video Pinball: Atari Video Computer

Vol. 3, No. 5-Sept/Oct 1977 Dynamic Debugging System for 8080 Assembly Language: Bibliography of "Limits to Growth" Models: Dwyer: \& Hour Course in Basic-Part 2: Programming Approaches to Solving Complex Equations: Computerized Conferencing. Symmetric Art on your Computer. Games: Nomad, Rotate. Lissajous. Evaluations: 5 Microcomputer Basics: Software Technology Music System

## Vol. 4, No. 5-Sept/Oct 1978

Educational Features: 4 Simulation Articles: Accounts Receivable Systems: Real World Games:A Real-Time Clock You Can Build: All about PASCAL: Intelligent Videodises: 40 Programming Ideas: ROM Section: Hex and Star War Games. Evaluations: Exidy Sorcerer: Radio Shack TRS-80 Bally Arcade: Speak \& Spell and Spell ing B: Computalker Speech Synthe sizer: Peninsula Pet Cassettes. Merlin

O. 4, No. 6-Nov/Dec 1978

Consumer Computers Buying Guide Critical Path Analysis: Experiment in Teaching Strategic Thinking: ROM Section. Subject Index and File Index in Basic. Programs for Mail Lists. Patterns. Plotting, Corral, Joust, Puzzle, and a Christmas Letter. Evaluations CP/M Disk Operating Systems: North Star Horizen: Backgammon Compu ters: Smart Electronic Games and

## Vol. 4, No. 1-Jan/Feb 1978

 Fast Sorting Algorithm: How to Write a Computer Simulation: More File Structures: LOGO: Murphy's Laws: Dwyer: 8 Hour Course in Basic - Part 4. Programs for World Population Model. Biorhythms in Basic and APL. Yahtzee. Van Gam. Kirkof, and Network. Evaluations: 3 Electronic Games: Radio Shack TRS-80: Heath H8 System.Vol. 5, No. 2-February 1979
Multiple Regression Analysis Simplified: Budget Management: Sports Predictions: PEEKing and POKEing for Video Displays: Interview with Michael Shrayer: Computers and Edu-eation-Questions of Value: Game Programs for Gold Mine and A tom 20 Evaluations: Heathkit H-8: Thinker Toys Floppy Disk: Electric Pencil: Western Digital Pascal Chip Set: Four Computer Music Records.
Vol. 5, No. 3-March 1979
Six Articles on Data Base Manage ment: Sports Judging on a Microcomputer: Shopping for a Payroll System: Programming the Game of Go: Business Computing with the Sorcerer: Social Science Survey Program. Evaluations: Terrapin Turtle: Videobrain: Pet Monitor: TRS-80 Floppy Disk Apple Floppy Disk
Vol. 5, No. 4-April 1979
Safeguarding Your Computer: Interpretive Programming: Elements of a Good Computer Game: Music Composition: Marin Computer Center. Programs for An Intelligent Calendar. Vertical Graphs and Bar Graphs. Flowers for the PET. Evaluations: Checker Challenger: Video Checkers: Checkbook Maintenance Systemı Whatsit Data Base Management Pro gram.
Vol. 5, No. 5-May 1979
Word Processing Systems: Pilot Tutorial: Writing User-Oriented Programs: Amoritization Schedules. Reading and Comprehension Exams: Hiding Your Basic Program: Cribbage and Mille Bornes Game Programs. Evaluations: WP Daisy Word Processing: Wordmaster Text Editor: PDI IQ Builder: Malibu 160 Line Printer
Vol. 5, No. 6-June 1979
Eignt Articles on Computer Graphics and Plotting: Using Basic Strings: Microcomputers in the Hospital: Billing Program for the Sorcerer. Inkblot and Greed Game Programs. Evaluations: TRS-80 Voice Synthesizer: HIPLOT Digital Plotter: Structured Systems. Name and Address Program: ALF/A pple Music Synthesizer

## Vol. 5, No. 7-July 1979

Four features on Sorting. Files and Data Bases: Creativity Test: World Power Systems: Personal Finance Model: Two Ecological Simulations: Programs for an Ecological Game. Niche. Brain Teaser, and Zone X. Evaluations: BrighterWriter. SWTPC CT- 82 Graphics Terminal: A PF PeCos One: Heuristics Speechlab: Micro Pro Super Sort: Diagnostic Programs for

Vol. 5, No. 8-August 1979
Can Computers Think?: 5 Basic Lan, waye Programminy Techniques: The Im and Your Computer: muMath: Image Processing: Manipulating Pencil Files: Adventure, a new type of computer game simulation. The Games HVOLT and FORT. Evaluations: Texas Instruments 99/4: Radio Shack TRS-80 Model II: SWTPC PR40 for the Pet:IMSAI VIO.

Vol. 5, No. 11-November 1979 Adventure: Complete Listing in Basic Controlling Household Devices: Car Pooling: Mumps language: Computer Art Exhibition: Build Your Own Joysticks: Telephone Dialer for TRS-80 or Northstar: Teacher-Made Tests: Evaluations: Comparison Chart of 6 Popular Personal Computers: Comparison of 26 Single Board Computers: Electronic Games \& Toys: Quick Printer 11: Interact Computer: UserDefinable Character Generators: TRS-80 Level III Basic: Pet Software from Creative Software: Word Processor: Introl X-10 Home Control System.

Vol. 5, No. 12-December 1979 Controlling Household Devices: Part back: Computers at the Rodeo: Creating Digitized Video Images. Programs for using the Microcomputer as an Investment Tool: Animation on the Apple. Magic Tricks. "Turn-Key" CP/M System. Evaluations: More Electronics Games: Language Translators: APF MP1000 Video Game System: 6 Word Processing Printers: Satellite Tracking Software: SysKit for the 8080: Assemblers: $\mathrm{CP} / \mathrm{M}$ vs. TSC: Statistics for the TRS-80.

## Vol. 6, No. 1-January 1980

Interviews with Donald E. Knuth and William Wulf: Six Features on Artificial Intelligence: Air Traffic Controller: Computerized Resume: GROW: A Program that Learns: Evaluations: Six Basics: NEWDOS and TRSDOS: Auto Scribe: Micro Music

## Vol. 6. No. 2-February 1980

Six Articles on Investment Analysis: David Levy: Intelligent Computer Games: Programs: Geneology. Graphing. Genetics: Evaluations: Word Star vs Electric Pencil: Pascal for the TRS-80; Miero Composer: Data Dubber: Sorcerer Word Processing Pac: Trivia Contest Results.
Vol. 6, No. 3-March 1980
Networks for Personal Computers: Artificial Intelligence: How to Make a Basic Tree: Interview with Joel Birnbaum: Three Mile Island Game Extended Precision Computation -Rolodex Data Base Program: Photographing Your Computer System Evaluations: TI 99/4. Modems. Cobol. Tiny c. 10 Software Packages.

## Vol. 6, No. 4-April 1980

Dr. KiloB YTE's Creative Popular Personal Recreational Micro Computer Data Interface World Journal-the Famous 73 page April Fool parady. 8 Articles on Reading and Language: Interview with Gordon Bell: Evaluations: Heath WH-89: Atari 800 vs PET: Chatworth Mark Sense Card Reader: Adventure.

Vol. 6, No. 5-May 1980
Seven Features on Saving Money with your Computer: Analysis of Stock Options. Budereting Model. Shopping Lists. Home litemtory. Home Purchase. Retirement Planning. Compu-ter-Aided Model Rocket Design: Two Natural Language Systems: Evaluations: PET 2022 Line Printer: APF Imagination Machine: Personal Software's Desktop Plan: Universal Data Entry System.

Vol. 6, No. 6-June 1980 Fourteen Graphics Articles: Polar Plots. 3-D Graphics. Animation. Graphic Mazes. Motion Simulation. Inside Space Invaders. 7 Music Articles: Digital Audio. Computer-Aided Sight Reading. Design of a Synthesizer. Digital Enhancement of Old Recordings. Comparison of Printers: Evaluations: The Atari Machine: Neelco's Music Box for the PET: HeathKit-Thomas Electronic Organ Kit.
Vol. 6, No. 7-July 1980
Four Articles on Adventure Games: Dragon. Dungeon. How to Fit a Large Program into a Small Machine. How to Write an Adventure. 6 Simulation Features: Genetics. Electric Management. Medical. Ecological. Sports. Self-Reproducing Programs: ManMachine Dialogs: Selecting a Computer Dealer. Evaluations: Super-Text vs. Easy Writer: Mountain Hardware ROM PLUS+: Toolkit for the Pet: Chart Comparing Basies of 8 Popular Computers
Vol. 6, No. 8-August 1980
Games Features: Computer Bismarck. Knight's Tour. Guess My Animal. Turnablock Game. Fifteen and Hot. Mind Exerciser. Marketing Your Own Program: Computer Graphic Designs: Robotics Conference: Insertion Sort: Stocks and Listed Options. Evaluations: Magic Wand: VisiCale: Beta-80: Asteroids in Space

Vol. 6, No. 9-September 1980 Twenty Educational Applications and Features: Language Arts CAI Development. Grading Program. Computers in the Classroom. Asimov: Point of
View: How to Heapsort: New ConsuView: How to Heapsort: New ConsuShopping List for Schools. Evaluations: Milliken Math Sequences: Exaron Stringy Floppy: EDS Videotape Series "Little Computers-See How They Run": 8 Apple II Softw
ages: Educational Packayes
Vol. 6, No. 10-October 1980 Symposium on Actor Languages and Solve It: 9 New Applications and Games: Election Prediction. The Pres idential Campaign. Computer Division Evaluations: OSI C2-4P Computer. TRS-80 Voxbox. Two Text Editors. Five Music Systems. 15 Software Pack. ages. BASEX
Vol. 6, No. 11-November 1980
Actor Languages and Smalltalk - Part 2: Effective Documentation: Bombproof Data Entry: Interactive Systems and Virtuality: Fast Sorting: Controlled Input in Basic: Loosening Packed Basic. Future of Small Business Computing: Planning Your Diet. Evaluations: Electronic Games: Computer Ambush: TR Copy
Vol. 6, No. 12-December 1980 Buyimparison or Basic Systems and Elecies to Personal Computers Legal Protection of Computer Programs: Nuclear Power Plant Simula tion: Superman Game: Logic Problem Solver: Interview with the inventor of the ZX80. Clive Sinclair: Alvin Toff ler: The Electronic Cottage. Evalua tions: Sinclair ZX80. A tari. Apple Pascal. CBM2022 Smart Printer. Pearl. Apple II and Apple II Plus. Pet. TRS 80.


## July 1977

SOL. The Inside Story: Braille and the Computer Video Newspaper: A Chip is Born: The Care and Feeding Your Home Computer. Digital

## August 1977

The Kit and 1. Part 1, by someone who's never soldered before: Introduction to the Fundamentals of Computer Memory: Tips for the Do-it-Yourself Hardware

## September 1977

Xeroxes and other hard copy off your CRT: Payroll Program: How Computers Work: The Kit and 1. Part II: or Power to the Computer: CCD's How They Work and How They re Made: A look at PLATO, an Educational Computer System: IBM 5100 .

## October 1977

Binary Arithmetic For the Bepinner
Blind: The Kilobyte Card: Scott Joplin on Your Sci-Fi Hi-Fi; Building a Basic Music Board: Flowcharting: Payroll Program.

## November 1977

Solar Energy Measurement: A Bespin ners Introduction to BASIC: The Kit and 1. Part 111: More Music to Play on Your Computer: Miero Maintenance Solomon and Viet: Putting Together a Personal Computing System:

## December 1977

Beginners Guide to Peripherals: The Best Slot Machine Game Ever Artificial Intelligence?: An Electronic Jungle Gym for Kids: File Copy Program: Better Health Through Electronics: The Kit and I Part IV

## January 1978

Synthetic Skin for Your Robot and How to Make It: TLC: A Visual Programming Language: The Code That Can't Be Cracked: Beginner's Guide to Computer Graphics: The Computer and Natural Language: First-Timer's Guide to Circuit Board Etching.

# Variable Conversions in the ZX80 

## Joseph Sutton

There are many cases when it is convenient to convert one type of variable to another, such as numeric to string, or string to numeric. In the ZX 80 variable conversions from numeric to string are done with the STRS( ) function. The reverse conversion is not available with the 4 K Basic. Given a string variable containing numbers, the program below looks at each number individually to determine its magnitude. The CODES for the numbers go from 28 to 37 (CODE ("0") $=28, \operatorname{CODE}(" 1 ")=$

29 , etc) so that by subtracting 28 from the CODE you get the number itself. By using CODE (AS) - 28
then remove the first character with TLS ( ).

108 LET AS $=$ TLS (AS)
X is then tested with an IF statement to verify that it is a number from 0 to 9 , and if it is, it is put into the numeric N with LET $\mathrm{N}=(\mathrm{N} * 10)^{*} \mathrm{X}$.

109 IF NOT X < 0 AND $\mathrm{X}<10$ THEN LET $\mathrm{N}=(\mathrm{N} * 10)+\mathrm{X}$

```
 10 INPUT A&
20 GOSUB 100
30 PRINT N(O):"""#TLま(STRक(1O**Z)):N(1):"*1O**"#N(2)
40 STOP
100 LET Z=0
101 LET Y=0
102 DIM N(2)
103 LET N(O)=0
104 LET N(1)=0
105 LET N(2)=0
106 LET S=0
107 LET X=CODE (Aक) -28
108 LET A$=TL$ (A$)
109 IF NOT }X<0\mathrm{ AND }X<10\mathrm{ THEN LET N(S)=(N(S)*10) +X
110 IF X=192 THEN LET }Y=Y+5+
111 IF }x=-1\mathrm{ THEN LET }\textrm{g}=
1.12 IF }X=14\mathrm{ THEN LET }5=
113 IF }X=-27\mathrm{ GO TO 116
114 IF }X=0\mathrm{ AND }S=1\mathrm{ AND N(1)=0 THEN LET }z=z+
115GO TO 107
116 IF Y=1 OR }Y=4. THEN LET N N O)=N (O)*-
117 IF Y=3 OR }Y=4\mathrm{ THEN LET N(2)=N (2)*-1
118 RETUFN
```

This is the full subroutine with all the fancy things added and a small "main" program.

$$
\begin{aligned}
& \text { ENTERTNG } \\
& 1.41 .4 E-3 \\
& 150 \\
& -500.8 E 6 \\
& -5.003 E-9
\end{aligned}
$$

```
FRINTS ON SCREEN
1.41.4*10**--3
150.0*10**0
-500.8*10**S
-5.003*10**-9
```

Let's assume we have a string containing "123." Line 107 sets X equal to 1 (29-28), then line 108 removes the " 1 " from AS, and line 109 sets X equal to $1(\mathrm{~N}=(0 * 10)$ $+1)$. If we return to 106 and start again, $\mathrm{A} S=" 23^{\prime}, \mathrm{X}=2$ and $\mathrm{N}=12\left(\mathrm{~N}=\left(1^{*} 10\right)\right.$ +2 ). If we go through a third time, $\mathrm{AS}=$ $" 3 ", \mathrm{X}=3$ and $\mathrm{N}=123(\mathrm{~N}=(12 * 10)+$ 3). Now we need something to test for the end of the string.

## 113 IF X $=-27$ THEN RETURN <br> 115 GO TO 107

In the ZX80 all strings end with a "null" character with a CODE of 1 . Line 113 tests for this and returns to the main program when the end is detected. Line 115 keeps the routine going until line 113 finds the end. Now, with one more line, we have a Basic subroutine for doing the missing conversion.

$$
\begin{aligned}
& 103 \text { LET } \mathrm{N}=0 \\
& 107 \text { LET } \mathrm{X}=\mathrm{CODE}(\mathrm{~A} \$)-28 \\
& -108 \text { LET AS }=\text { TLS }(\mathrm{AS}) \\
& 109 \text { IF NOT } \mathrm{X}<0 \text { AND } \mathrm{X}<10 \text { THEN } \\
& \text { LET } \mathrm{N}=(\mathrm{N} * 10)+\mathrm{X} \\
& 113 \text { IF } \mathrm{X}=-27 \text { THEN RETURN } \\
& 115 \text { GO TO } 107
\end{aligned}
$$

This subroutine will search the string AS until it finds a number. It will then put the numbers into N , stopping when it finds the end of the string, ignoring all other characters. The routine will also destroy the contents of $A \$$, so $A \$$ must be saved if you want it for later use.

With only minor modifications it can be made to accept decimal numbers and scientific notation. First N becomes an ARRAY containing the integer portion in $\mathrm{N}(0)$, the fractional portion in $\mathrm{N}(1)$, and the exponent (for scientific notation) in N (2). To use this routine as a subroutine all three portions of the ARRAY must be set to zero at the beginning. $S$ is the counter to tell the ZX80 in which part of the ARRAY to place the numbers. We also have to add lines to detect decimal points and "E" if scientific notation of the form 1.5 E 3 is required $\left(1.5 * 10^{3}\right)$. Line 110 is added to detect minus signs and lines 116 and 117 properly locate the minus signs. When the fractional portion of the number is processed, the leading zeros are removed. If they are not kept track of, errors will occur; 1.005 would become 1.5 , etc. Line 114 detects leading zeros and Z equals the number of leading zeros. In line 30 of the main program you will notice the expression TLS (STRS ( $\left.10^{* *} \mathrm{Z}\right)$ ). IF $\mathrm{Z}=2$ (2 leading zeros), $10^{* *} \mathrm{Z}=100$ and the expression becomes the string " 100 " with the " 1 " removed or " 00 ". This replaces the zeros in the print statement. Nn-ur leading zeros can he $5=$ 100,000 and $y$ error message 6 , arithmetic overflow).

[^2] NJ 07876.

# Graphics, Games and Gold 

## Martin Oakes

Games can he divided into three broad classes. The first has a clearly defined play area which remains the same each time the game is played. Chess, backgammon. tic-tac-toe, and all the card games fall into this category. The second class requires a random area which regenerates differently each time the game is played. Into this group fall the adventure, hunt and seek classics. The last class encompasses all the animated games involving flight and shooting, such as Star Wars and Space Invaders, which require realtime inter-action.

I decided to write my own game using as much of the ZX 80 graphics as possible. but without waiting for the 8 K Basic ROM and 16 K RAM expansion to become available. My choice of game was influenced by several considerations. Everyone knows what the successful outcome of a chess.. backgammon, or card game should be, so there is little room for invention. The game either meets expectations or fails. Since the computer

[^3]

Figure 1. The Game Area.

```
 10 CONSTANTS
100 MAIN PROGRAM
200 -CONT-
300 SQUARE GAME AREA
400 RANDOM WOOD
5 0 0 ~ P E E K ~ I N ~ D I S P L A Y ~
6 0 0 ~ P O K E ~ I N ~ D I S P L A Y ~
700 RANDOM PATH
800
900 MOVE CHARACTER
1000 SEARCH FOR CHARACTER
1100
1200 FIND AND REPLACE
1300 GOOD OR EVIL?
```

Figure 2. Organization of Program.
is to be a playca, it must ic a wortily opponent. A dynamic game would have to wait until the 8 K ROM becomes available because the screen goes blank during computation with the 4 K Basic.

My choice then was to plan an "adventure" type of game, which has the added bonus that the writer can make, his own rules.

From the beginning I did not expect to fit all the features I wanted into 1 K of memory. So instead I wrote a series of subroutines which could be independently de-bugged and set aside to wait for the arrival of more memory. At that time they would be at joined together to make a working program.

The hero is to roam within a randomly generated wood, cave, or castle. In the final version the monsters and treasures he encounters may appear as drawings. The game area is a rectangle 15 characters or columns by 10 lines. Later it can be expanded to occupy as much of the screen as required. See Figure 1.

Each feature of the game is written as a subroutine starting at a line number which is a multiple of 100 . See Figure 2.

Our hero is going to begin his journey in a wood:

```
400 FOR L = 1 TO 10
405 LET M = L
410 IF L > 5 THEN M = 10 - L
415 LET A = RND (3) + 5 - M
420 FOR C = 1 TO A
425 PRINT CHRS (128);
4 3 0 ~ N E X T ~ C ~
435 LET B = RND (3) + 2 + M
440 FOR C = 1 TO B
460 PRINT CHRS (9);
4 6 5 \text { NEXT C}
470 LET D = 15- A - B
475 FOR C = 1 TO D
4 8 0 ~ P R I N T ~ C H R S ~ (1 2 8) ;
4 8 5 \text { NEXT C}
4 9 0 ~ P R I N T ~
4 9 5 \text { NEXT L}
RUN this program.
```

We now have a grey wood surrounded by a black border. Each time this is run it is generated differently. We now add randomly dispersed clearings where our hero will find treasures and do battle.

```
445 LET F = 9
450 LET E = RND(12)
4 5 5 ~ I F ~ E ~ = ~ 1 0 ~ T H E N ~ L E T ~ F ~ = ~ 0 ~
4 6 0 ~ P R I N T ~ C H R S ~ (F) ;
```

Note that line 460 is replaced. RUN this part. Now let's make it into a subroutine called from a main program.

```
100 GO SUB 400
2 9 9 ~ S T O P
```

497 RETURN
RUN this.
The Jan/Feb 1981 issue of SYNC describes on p. 23 how to use the memory address stored in D-FILE to locate the display file.

```
600 POKE (PEEK (16396) + PEEK
 (16397)*256 + Q). T
6 0 5 \text { RETURN}
```

```
101 LET Q = 12
102 LET T = 58
103 GO SUB }60
```

RUN this. The letter $U$ appeared in the top line of the display. Let's change this to place the U at different points. The
game area is a matrix of $15 \times 10$ characters. but because of the NEWLINE character. each line is really 16 characters long.

## 101 INPUT Q

104 GO TO 101
RUN this. The program waits for an input. Try each of the following.

1(NL)
3 (NL)
17(NL)
32(NL) Oops! We destroyed the NEW-
LINE character. Enter two alphabetic
characters to exit with error 2/101.
Delete lines 101, 103, 104.
Now we will develop a subroutine to allow our hero to move around within the wood.
900 INPUT AS
901 IF AS $=$ "0" THEN STOP
905 LET $\mathrm{Q}=\mathrm{P}+16$
910 IF AS $=$ " N " THEN LET $\mathrm{Q}=\mathrm{P}-16$
915 IF AS $=$ " $E$ " THEN LET $\mathrm{Q}=\mathrm{P}+1$
920 IF AS $=$ " W " THEN LET $\mathrm{Q}=\mathrm{P}-1$
940 LET T $=58$
945 GO SUB 600
970 LET $\mathrm{P}=\mathrm{Q}$
975 RETURN
125 GO SUB 900
101 LET P $=152$
150 GO TO 125
RUN and enter E.N.W.S to get a string of U's. Type 0 to exit from line 901.
Now we want to erase the trailing (old) positions of U to leave only one in the display.

```
 950 LET \(\mathrm{T}=9\)
 955 LET \(\mathrm{R}=\mathrm{Q}\)
 960 LET \(\mathrm{Q}=\mathrm{P}\)
 965 GO SUB 600
 970 LET \(\mathrm{P}=\mathrm{R}\)
 RUN this.
```

Our hero must be confined to the wood until he has earned the right to move on to other adventures.

925 IF Q ( 1 OR Q ) 160 THEN GO TO 975
930 GO SUB 500
935 IF NOT T $=9$ THEN GO TO 975
Look in location Q. to which we will move from the present position P .
500 LET T $=$ PEEK (PEEK (16396) + PEEK (16397) * $256+$ Q)
505 RETURN
RUN and try to move our hero into a clearing or out of the wood.
Exit with $0(\mathrm{NL})$.

This subroutine searches for a specific character on a line and replaces it.

```
1200 LET P = L * 16
1205 FOR C = 1 TO 15
1210 LET Q = P + C
1215 GO SUB 500
1220 IF T = S THEN GO TO 1235
1225 NEXT C
1230 RETURN
1235 LET P = Q
1240 LET T = U
1 2 4 5 \text { GO SUB } 6 0 0
1255 RETURN
```

Our hero is fated to be cast randomly into the wood to begin his journey.

```
105 LET L = RND (10)
110 LET S \(=9\)
115 LET U \(=58\)
120 GO SUB 1200
RUN this.
```

Now that we have some working subroutines we can set them aside and delete them from memory to make space for new ones.

We will work with a less fancy wood, so delete lines 400-497, and substitute:

```
300 LET F = 9
305 FOR L = 1 TO 10
310 FOR C = 1 TO 15
315 IF RND (10) = 10 THEN LET F = 0
320 PRINT CHRS (F):
325 LET F = 9
3 3 0 ~ N E X T ~ C ~
335 PRINT
340 NEXT L
3 4 5 \text { RETURN}
```

For the purpose of checking out the next subroutines. our hero can begin at the bottom of the game area. so delete lines 1200-1255.

Simplify the main program to read:
100 GO SUB 300
101 LET $\mathrm{P}=152$
125 GO SUB 900
150 GO TO 125
299 STOP
RUN this and exit with $0(\mathrm{NL})$.
Our hero cannot enter a clearing in the wood. but he needs to know when he has found one. For this we need a search for a neighboring character routine.

1000 LET $\mathrm{Q}=\mathrm{P}-16$
1005 GO SUB 500
1010 IF T = S THEN GO TO 1060
1015 LET $\mathrm{Q}=\mathrm{P}+16$
1020 GO SUB 500
1025 IF T $=$ S THEN GO TO 1060
1030 LET $\mathrm{Q}=\mathrm{P}+1$
1035 GO SUB 500
1040 IF T $=$ S THEN GO TO 1060
1045 LET $\mathrm{Q}=\mathrm{P}-1$
1050 GO SUB 500
1055 IF T $=$ S THEN GO TO 1060
1060 RETURN

When our hero finds the clearing, we will replace it with an inverse X .

1300 LET T $=189$
1305 GO SUB 600
1310 RETURN
Since a clearing is a blankspace, $\mathrm{S}=0$. Add to the main program:

102 LET S $=0$
130 GO SUB 1000
135 IF T $=$ S THEN GO SUB 1300
RUN this program and move our hero around with N, S, E, or W.

We can do something more interesting when our hero finds a clearing. This routine POKEs a random number into the clearing representing gold, which our hero collects.

1302 LET $\mathrm{V}=\mathrm{V}+\mathrm{X}$
1303 LET T $=\mathrm{X}+28$
1305 GO SUB 600
1310 RETURN
104 LET V $=0$
901 IF AS $=" 0$ " THEN GO TO 980
980 PRINT "GOLD", V
985 STOP
As you RUN this and move our hero around, he collects the gold. When $0(\mathrm{NL})$ is typed, his treasure is displayed. At this point we have all the rudiments of an adventure game. From here we can use our imagination to change the options in subroutine 1300 .

## Are you in SYNC?

If not, you should be. We would like any programs, translations of existing programs, games or tips which you have to pass on to fellow Sinclair ZX-80 or MicroAce owners. Articles are much more lively if accompained by photos (black and white), diagrams, and illustrations. If you do not have an output printer, please type program listings and carefully check them against the listing on the screen. Sample runs should be included with programs rather than just a description of what the program does. Articles should be typed, double space. Your name and address, with phone number should be on first page; all other pages should be numbered. All submissions should include return postage. Payment ranges from $\$ 15$ to $\$ 40$ per printed page.
Please send all submissions to:
SYNC
39 E. Hanover Avenue
Morris Plains, New Jersey 07950

# Sourcebook of Ideas 

## Many mathematics ideas can be better illustrated with a computer than with a text book.



Consider Baseball cards. If there are 50 cards in a set, how many packs of bubble gum must be purchased to obtain a complete set of players? Many students will guess over 1 million packs yet on average it's only 329.

The formula to solve this problem is not easy. The computer simulation is. Yet you as a teacner probably don't have time to devise programs to illustrate concepts like this.

Between grades 1 and 12 there are 142 mathematical concepts in which the computer can play an important role. Things like arithmetic practice, $X-Y$ coordinates, proving geometic theorems, probability, compounding and computation of pi by inscribed polygons.

## Endorsed by NCTM

The National Council of Teachers of Mathematics has strongly endorsed the use of computers in the classroom. Unfortunately most textbooks have not yet responded to this endorsement and do not include programs or computer teaching techniques. You probably don't have the time to develop all these ideas either. What to do?

For the past six years, Creative Computing magazine has been running two or three articles per issue written by math teachers. These are classroom proven, tested ideas complete with flowcharts, programs and sample runs.

Teachers have been ordering back issues with those applications for years. However,
many of these issues are now sold out or in very short supply.

So we took the most popular 134 articles and applications and reprinted them in a giant 224-page book called Computers in Mathematics: A Sourcebook of Ideas.

## Ready-to-use-material

This book contains pragmatic, ready to use, classroom tested ideas on everything from simply binary counting to advanced techniques like multiple regression analysis and differential equations.
The book includes many activities that don't require a computer. And if you're considering expanding your computer facilities, you'll find a section on how to select a computer complete with an invaluable microcomputer comparison chart.
Another section presents over 250 problems, puzzles, and programming ideas, more than are found in most "problem collection" books.
Computers in Mathematics: A Sourcebook of Ideas is edited by David Ahl, one of the pioneers in computer education and the founder of Creative Computing.
The book is not cheap. It costs \$15.95. However if you were to order just half of the back issues from which articles were drawn, thev would rost ynu nyer $\$ 30$.

## Satisfaction Guaranteed

If you are teaching mathematics in any grade between 1 and 12 , we're convinced you'll find this book of tremendous value. If, after receiving it and using it for 30 days you do not agree, you may return it for a full refund plus your return postage.
To order, send your check for \$15.95 plus $\$ 1.00$ postage and handling to Creative Computing Press, Morris Plains, NJ 07950. Visa, MasterCard, and American Express orders may be called in toll-free to 800-$631-8112$ (in NJ 201-540-0445). School purchase orders should add an additional $\$ 1.00$ billing fee for a total of $\$ 17.95$

Don't put it off. Order this valuable sourcebook today.

# creative Gorppatind 

Morris Plains, NJ 07950
Toll-free 800-631-8112
(In NJ 201-540-0445)

## A Trick and a Graphic System

## by Keith Comer

The ZX80 version of Basic is missing a few statements you may used to using. Getting those graphic characters to do anything really impressive seems downright impossible. The potential is there, but how do you squeeze it out? Using a simulated DATA statement, I have developed a graphic system to allow easy production of graphic displays.

First, let us consider the pseudo-DATA statement. Suppose you need the values $6,4,9$ and 7 for some obscure task. Watch:

```
10 LET AS="6497"
20 LET X=CODE(AS)-28
30 GOSUB }100
40 LET AS=TLS(AS)
50 IF AS +"" THEN STOP
6 0 \text { GOTO 20}
```

Now, line 10 is the "DATA" statement. The terms are just slammed together in a string ( A S).

Line 20 fetches the ASCII code for the first character in the string (which is 34) and by subtracting 28 gets the real number you want (which is 6).

Line 30 goes to the part of the program that is to perform that obscure task. The variable X is holding the value you want.

Line 40 clips off the first data element in order to get at the next one.

Line 50 checks to see if the string is empty, in which case we are done and can STOP.

Line 60 starts the whole thing over again (in traditional reiterative fashion).

Obviously, if you need data with more than one digit per entry, you need to trim the digits off one at a time and reconstruct the number from those digits. If you needed $27,32,2$, and 23 , you would use:

10 LET AS $=$ " $27320223 "$
20 LET X $=(\operatorname{CODE}(\mathrm{AS})-28) * 10$
30 LET AS $=$ TLS (AS)
40 LET $\mathrm{X}=\mathrm{X}+\operatorname{CODE}(\mathrm{A} S)-28$
50 GOSUB 10000
60 LET AS $=$ TLS (AS)
70 IF AS $=\cdot " *$ then STOP
80 GOTO 20
Notice that there are no commas between the data elements and that the 2 has to go in as 02 .

[^4]So how does all this number crunching help you realize those incredible graphic displays you have been dreaming about? Watch again:

10 LET AS = " $£ £ £ £ £ £ £ £ 5 E 55 E 5 E £ B B$ BBEEBBBBEBBBBEABBBBEEBBBBE $£$ PBBBEAA $3 A A 4 A B B B B A A A £ B B B B A A$ A3APBBBEAPBBBAAA"

20 LET $\mathrm{X}=\mathrm{CODE}(\mathrm{AS})$
30 IF $X=12$ THEN PRINT
40 IF $\mathrm{X}=12$ THEN GOTO 80
45 IF X < 38 THEN GOTO 110
50 IF $\mathrm{X} \leqslant 48$ THEN LET $\mathrm{X}=\mathrm{X}-36$
60 IF $\mathrm{X}>47$ THEN LET $\mathrm{X}=\mathrm{X}+80$
70 PRINT CHRS(X);
80 LET AS $=$ TLS $(\mathrm{AS})$
90 IF AS $=" "$ THEN STOP
100 GOTO 20
110 FOR $\mathrm{N}=1$ TO X-28
120 PRINT " ";
130 NEXT N
140 GOTO 80
Line 10 is the data, as before.
Line 20 fetches the first (or next) character, as before.

Lines 30 and 40 look for the ASCII code 12 , which is the $£$ symbol. It is used to effect a line feed. (Imagine a cross between an "L" and an "F".) This allows you to proceed down the page without typing spaces to the end of each line.

Line 45 checks for an ASCII code which would indicate a number. The routine at 110 will print that many spaces, up to 9 of course; remember, only one digit per data element. This is mainly a convenience, but I have noticed that many pictures I have done are mostly spaces.

Line 50 and 60 convert the ASCII codes of letters from the data line to ASCII codes of graphic symbols. You can save a few bytes (and forsake clarity) by using:
$50 \mathrm{IF} \mathrm{X}<48$ THEN LET X $=\mathrm{X}-116$
60 LET $\mathrm{X}=\mathrm{X}+80$
Line 70 prints the selected graphic symbol.

Lines 80, 90, and 100 should be obvious.

Lines 110 to 140 are the spacing routine referred to by line 45 , a simple FORNEXT loop.

Now the system works like this: Turn to page 78 in the ZX 80 instruction manual and put the letters A through J next to graphic symbols 2 through 11 (ASCII). Put letters M through V next to symbols 130 through 139. The reason that K and L are skipped is so that K can be converted to ASCII code 128 which is the inverted space or a solid black square.

That completes the program. The system allows the use of all the graphic symbols with equal ease, not just the ones on the keyboard. They are all available with one keystroke of typing each. The result is that the screen can be used with the effect of double the resolution, because symbols are used that access any quarter, or any combination of quarters, of each graphic block.

All you do to construct your picture is to draw what you want on graph paper. Your field is 64 squares wide and 46 squares high.

So get your drawing the way you want it. It helps to fill in the squares of the graph paper "all or nothing" (Figure 1). Then divide the picture up into "four squares." This is where the resolution gets halved into the 32 by 23 screen (Figure 2). I just draw over the original lines of the graph paper with ink of another color, every other line. Then convert each "four square" to its corresponding letter from the graphic symbol chart you have just written (Figure 3). Remember to use the $£$ sign when you get to the end of a line. Now just string the letters together into a data statement for line 10 like this:

## 10 LET AS="GNE£ACA£DN"

The advantage of this system is that the program itself is fairly short so you can store a rather elaborate (and/or big) picture in line 10. It cannot hold enough characters to do a full screen (at least not with 1 K ) but it will hold more than 200 . Since it is storing them as one byte each, I doubt that there is a way to store it any tighter. When you save a program, you have also stored the picture.

A few examples are probably in order: INVADERS: "FBKKBE£KRQRQK£NK RQKN£DPDCOC" "1BOKPB£MKNKNKA£D QKNKRC£BN1N1NB"
HEART:
"FKEOP£KKKKKA£QKK KKC£1QKKC£2QC"
FACE: "2BRNPE£10C3QE£MC5Q£ R2C1C1DA£A1E1C1E1A£ Q1S2FCMC£DP1NNCFR£ 1DPE1BR£3NNC"
More extreme is the
CASTLE: " $£ 78 \mathrm{~F} £ 78 \mathrm{M} £ 77 \mathrm{FKP} £ 65 \mathrm{M} 1 \mathrm{~F}$ KKKP£650E1M1M£550KK EM1M6A£65AA1M1MBE3 FP£65AA101MR40KE£65 AAOC1M4OKKKE£6BBB 2ANC2M5A1A£5FA1M2A 3KM4FA1P£502M2A3KM 4M2M£4FA2DNNC4M4R2 DA£4MBBE8MBBBBA3P£ 7A1K20NNP7K1M£7A30C 2DP6K1M£7A3A4M8M£7 A3A4M8M£7A3A4M8M£7 PBBBA4MBBBBBBBBO*

If you want to do wider spacing, you can use this routine to get two digit's worth of spaces. Eliminate lines 30 and 40 if you want to save space; just space all the way to the end of each line. Replace lines 110 to 140 with:

110 LET $\mathrm{Z}=(\mathrm{X}-28)^{*} 10$
120 LET AS $=$ TLS (AS)
130 LET $\mathrm{Z}=\mathrm{Z}+(\operatorname{CODE}(\mathrm{AS})-28)$
140 FOR X $=1$ TO Z
150 PRINT
160 NEXT X
170 GOTO 80

Using this modification you can "draw" a U.S. MAP "3232323226E12PRNNNNN NNNQC06OK11MC09DNRS03RQC1101 2ARA01OSO12A12PAPRCM13A17M13 Q17R13ME16A14PE14OC15PE13A17Q BBBE03FBRNNPA21QBEFR04DK23PR 06QA22DA ${ }^{\prime}$


Figure 1.


Figure 2.


Figure 3



## Gauntlet Ken Berggren

```
 1 \text { REM SPACE}
70 PRINT "HOW MANY MONSTERS?(1-4)"
80 INPUT N
90 LET C=0
100 LET D=0
1 1 0 ~ C L S ~
115 IF N>4THEN GO TO 70
120 DIM 5(N)
130 FOR L=1 TO 6
1 4 0 ~ F O R ~ K = 1 ~ T O ~ 2 0 ~
170 PRINT CHR$(-(RND (8)>5)*9);
180 NEXT K
190 PRINT
210 NEXT L
220 FOR J=1 TO N
230 LET B (J)=RND (L-1)*K-2-(K/5)*(J-1)
240 NEXT J
250 LET G=K*3
260 GO SUB 900
270 GO TO 430
280 LET S=G
290 INPUT C$
3 0 0 ~ F O R ~ J = 1 ~ T O ~ 2 , ~
310 LET C=CODE (C$)
320 IF C=58 THEN LET S=S-K
330 IF C=41 OR S<O THEN LET S=S+K
340 IF C=43 OR C=39 AND S=(S/K)*K THEN LET S=S +1
350 IF C=39 THEN LET S=S-1
360 IF S>(L-1)*K THEN LET S=S-K
370 IF S+1=((S+1)/K)*K THEN GO TO 700
380 LET C$=TL$(C$)
3 9 0 ~ N E X T ~ J ~
395 GO SUB900
400 IF PEEK (S+D)=61 THEN GO TO 600
4 0 5 ~ P O K E ~ D + G , O
410 IF PEEK (S +D)=0 THEN LET G}=
4 3 0 ~ P O K E ~ D + G , 5 2
4 4 0 ~ F O R ~ J = 1 ~ T O ~ N N
4 5 0 ~ P O K E ~ D + B (J) , O
4 6 0 ~ L E T ~ C = K
4 7 0 ~ I F ~ B (J) / C = G / C ~ T H E N ~ L E T ~ C = 1 ~
4 8 0 ~ I F ~ B (J) - C < O ~ T H E N ~ L E T ~ C ~ = ~ - ~ C ~
490 IF PEEK(D+B(J)-C)=9 AND RND (9)>4 THEN LET C=0
500 LET B (J)=B(J)-C
510 IF PEEK(D+B(J))=52 THEN GO TO 600
5 1 5 ~ I F ~ R N D ~ (9) > 7 ~ T H E N ~ G O ~ T O ~ 4 6 0 ~
5 2 0 ~ P O K E ~ D + B (J) , 6 1
5 3 0 ~ N E X T ~ J ~ J ~
540 GO TO 280
```

Gauntlet is a game played on a rectangle 19 spaces by 6 spaces. The object is to run a gauntlet of random obstacles and monsters, beginning on the left side and crossing the rectangle. You win when you have successfully moved your marker to the right side.

First you must decide how many monsters you think you can handle, from one to four. Then . . the screen is randomly sprinkled with blocks. You (0) start at the extreme left. The monsters $(\mathrm{X})$ are between you and your goal, the extreme right.

You move by entering the letters U,D,F or B. For example, to move down and back diagonally you would enter DB or BD. A single letter moves you one space and a Newline alone maintains your position. It is possible to jump an obstacle but if you try to land on one you will not move at all. The monsters frequently blast through the barriers and sometimes that can help you.

The monsters drool green drool, never bathe and have very bad breath. They are also lazy. Except when angry they move only one space at a time. But for all their faults these guys are not dumb. They are very cautious and try to get in front of you before they advance.
When the game is over a NEWLINE will run it again. Any key before the NEWLINE will stop it.
Here are the major sections of the program:

Line 1 is a machine language routine.
Lines 70-120 set the number of monsters. Lines $130-210$ set the starting positions. Lines 280-430 move the man.
Lines 440-530 move the monsters.
Lines $600-850$ end the game or start another.
Lines $900-910$ a routine to call the routine.
The machine language routine finds the first character in the display file. It saves

[^5] KY 40207.

## SYNC

## Reader Survey

about ten bytes over PEEKing and, with only 1 K , every little byte counts.

To load the routine, enter REM and five spaces. Then type in the "loader program" and run it. Enter the five numbers from the "decimal listing" and double check them when you are through. Then type in the main program. You will find that various letters appear around the place newlines are entered. This can be ignored. The condition will disappear when the program lines replace the subroutine loader.

Some of the values for the routine are not character codes, and they do strange things when the ZX 80 tries to put them on the screen. Some codes will crash a program. To play it safe push the REM statement off the screen with more program lines or use POKE 16403,100. Then do not use LIST without a line number, at least not until you have the program on tape. I do not like that, but I have not found another way to protect a routine and still be able to save it with a program. Any suggestions?

Here are some ways to tailor the program to your own tastes. The TO value in line 140 determines the length of the lines that form the gauntlet. The TO value in line 130 determines the number of lines or the height of the gauntlet. You can change the shape of the display by adjusting those values. However, in 1 K this program allows only about 125 characters in the display file. The size of the display file will roughly equal the length of a line plus one, times the number of lines. If you get an error number 4 or 5 , it is probably because your display file is too large. To adjust your starting position, change the constant in line 250. A zero starts you on the top line. Adding one to the constant drops you down one line. Be sure that this constant is less than the height of the gauntlet! Finally, if you want to be able to move farther in each turn, increase the TO value in line 300. A three lets you move like a knight in chess. More than three and you are practically unbeatable.

In our first issue of SYNC we asked you to tell us about yourselves so that we will be able to make $S Y N C$ the magazine you want. Your response to our survey has been very positive and enthusiastic. This is what you told us.

First. you told us that you did not like to have surveys printed on the other side of pages you want to keep!

Next. we found that for four out of five of you the ZX80 (or MicroAce) is the only computer you own. About half of you are having your first computer experience with the ZX80. Many admitted yielding to the desire to have a personal computer because of the low price. This enabled you to break into the computer field without making a heavy investment in equipment before you were sure that computers would be a part of your personal activities. The other half have access to a computer at work or at school.

Topping the request list for SYNC content is a strong desire for programming tips (four out of five). So if you have a program to submit. remember that your fellow $S Y N C$ readers are clearly having great fun with their ZX80s. but they are also very eager to learn how to get the most out of their machine. They see every program as a learning opportunity. You will have their deepest appreciation if you share what you have learned about programming through notes in which you point out special tips and explain the main elements in your program.

A close second in requests is for new product information. While we make every effort to find out about new products. our advertisers and readers are the main sources of information. If you have found a new product that helps you with your ZX80. please tell the seller. distributor. or manufacturer about $S Y N C$ so that we can get the news around.

About $75 \%$ of our readers want to know more about interfacing techniques and to have software tutorials. Hardware tutorials, graphics software. device control, hardware evaluations. and software evaluations are in the "very much" column for about $60 \%$. Educational. mathematics. and business software are lower on the list with about $40 \%$. While games make the "very much" column for $40 \%$. "very much" and "okay" together include $90 \%$ of our readers.

Fiction. puzzles. and advertising came in at the bottom of your list for highest choice. but near the top for your second choice.

For most of our readers additional memory tops the list of planned equipment purchases for $90 \%$ with disk and printer capabilities next for $60 \%$. Creative Computing and Byte are the most widely read computer magazines other than SYNC.
The age distribution checks show that $14 \%$ are under $20 ; 27 \%$, $21-30 ; 31 \%$. 31 $40: 13 \% .41-50: 13 \% .51-60 ; 1 \%$ over 60 . Males outnumber females 37 to 1 .

Of course, all these are averages based on our survey compilations. It is clear from not only the survey. but also your letters that you have an amazing variety of interests involving your ZX80. Even though the survey summary may not show that other readers have the same special interests as you (and your comments mentioned a number of them). we invite you to share what you find with us. Your fellow readers are always looking for new things to do with their ZX80s. You may open up whole new interests. possibilities. and challenges.

## Try This

This column will feature short programs to show off your ZX80, impress your family and friends, and tickle your imagination when SYNC arrives at your place. We invite your contributions. Address them to SYNC, 39 E. Hanover Ave., Morris Plains, NJ 07950.

## 10 PRINT CHR\$(RND(3)); <br> 20 GOTO 10

Press RUN and NEWLINE. Disregard the error code which will be displayed. After you have fully absorbed the results of the routine, press any key and then RUN and NEWLINE again. Our thanks to:

## Nigel Searle

Sinclair Research Ltd.
50 Staniford St.
Boston, MA 02114

## Forest Treasure

## Paul Frahm

```
10 FOF I==1. TO 20
20 FOR J=1 TO 30
3O FRRINT " ";
40 NEXT 3
5 0 ~ F R I N T
6O NEXT I
70 DIM A(50)
EO DIM B(75)
90 LET C=0
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & M & & & & & & & & & & \\
\hline & & & & & & & & \(M\) & & & \\
\hline & & & & \(£\) & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & \(M\) & & & & & \(M\) & & & & & \\
\hline & & & & & & & &. & & & \\
\hline & & \(M\) & & & & & & & & & \\
\hline
\end{tabular}
100 LET E=RND (20)
110 LET F=FND (3O)
120 LET T=RND (619)
13O POKE PEEK (16396)+256*PEER (1.6397) +T.O
140 FOR I=1 TO 75
150 LET B (I)=FND (1000)+17300
160 NEXT I
170 LET M=FND (619)
180 FOKE FEEK (16396)+256*PEEK(16597)+M.50
190 LET C=C+1
200 LET A(C)=FEEK(16396)+256*PEEK(16397)+M
210 IF A(C)=FEEK(16396)+256*PEEK(16397)+T THEN GOTG 490
220 LET HEF+J1*(E-1)
230 FOKE FEEK (16596)+256*FEEK(16397)+H,12
240 LET N FEEK (16396)+256*FEEK(16397)+H
250 FOR I=1. TO C
260 IF A(1)=N THEN GOTO 460
270 NEXT I
280 IF N=PEEK(16396)+256*PEEK(16397) +T THEN GOTO 430
```

290 INPUT A辛
300 IF A皿="S" THEN LIGT
310 POKE PEEK $(16396)+256$ PEEK ( 16397 ) +H, 18
$320 \mathrm{FOF} \quad \mathrm{I}=1 \mathrm{TO} 75$
330 IF $B(I)=N$ THEN GOTO 400
340 NEXT I
SO IF As="F" AND F<SO THEN LET F=F+1
360 1F A $2=" L$ " AND F>1 THEN LET FFFF-1
370 1F A $=$ "D" AND E 30 THEN LET E=E+1
SBO IF Ab="LI" AND ESI THEN LET E=E-1.
390 E0T0 170
400 LET F=F+FND (9) -5
410 LET E=E+FND (9)-5
420 GOTO 170
430 POKE PEEK (16396) 256 *PEEK (16397) +T. 148
440 PRINT "YOU HAVE TAKEN THE TREASURE
450 GOTO 500
460 POKE FEEK ( 16396 ) 256 *FEEK ( 16397 ) +H, 19
470 FRINT "THE MONSTEF HAS KILEED YOU"
480 GOTO 500
490 FRINT "THE MONSTER HAS STOLEN THE TREASLIFE"\%
"Forest Treasure" is based upon "Random Graphics" by Gary McGath in the Jan/Feb 1981 issue of SYNC. You are riding through a forest, seeking the gold treasure. You are represented by " $£$ " and the treasure is a blank space. During your ride you may encounter enchanted (invisible) walls. When touched, these walls will alter your path, sending you in different directions (sometimes even leaping over the wall!). You may also encounter a monster, represented by the " M " square. This monster has the magical ability to duplicate itself in its search for you. If you run into a monster, or if the monster lands on you, or if the monster steals the treasure, you lose. If you get the treasure, you win. You control your movements by entering $\mathrm{U}, \mathrm{D}, \mathrm{R}$, or L for up, down, right, or left, and then pressing NEWLINE. Entering $S$ will exit you from the program.

Paul Frahm, 21123 Dettmering, Matteson, IL 60443.
500 FRINT "ANDTHER GAVE? (Y/N)"
510 INFUT B
520 CLS
530 IF Bक="Y" THEN FUUN
540 LIST

## Translating From Other Basics

## David Lubar

A command found in many versions of Basic, but not in the Sinclair, is ON ... GOTO. This is usually found in the form ON X GOTO $110,120,130$. The command makes a jump depending on the value of X . In this example, if X is 1 , the program will jump to 110 , if X is 2 , control goes to line 120 , and if X is 3 , the program continues at 130 . If X is outside the expected values, the program will fall through to the next line. In other words, for any value $N$ of $X$, the program will jump to the N th line listed in the expression.

The simplest way to replace this command is to use a series of IF...THEN statements. The above example is equivalent to

> 10 IF $X=1$ THEN GOTO 110
> 20 IF $X=2$ THEN GOTO 120
> 30 IF $X=3$ THEN GOTO 130

If there are many numbers involved, this process can get tedious. Fortunately, there are other ways to Sync the cat. The Sinclair allows for the use of expressions with a computed GOTO. For example, the above command can be replaced with GOTO $100+10^{*} \mathrm{X}$. In many cases, you can renumber a translation so the lines
used in ON...GOTO will be part of a simple progression. But there are cases where the progression is not simple.

Take a line such as ON X GOTO 90, 450, 376, 10. Rather than look for an algorithm that will produce the correct number, it is easier to set up an expression. Using the logical capabilities of the Sinclair, we can produce an expression that has the desired sum for any X value. What we need is a series where the sum of each member is zero unless it matches the desired X value. When there is a match, the sum will be the value of the desired line for the jump. The above line can be replaced with GOTO ABS $((X=1) * 90$ $+(\mathrm{X}=2)^{*} 450+(\mathrm{X}=3)^{*} 376+(\mathrm{X}=4)^{*}$ 10). This expression will produce the desired results. Those parts of the expression where the equality fails will produce a value of 0 . When there is a match, the result will be correct except for having a negative value. This is caused by the use in the Sinclair of -1 to signify true. The ABS takes care of that.

Another common Basic operation is the LEN function. The expression LET X $=$ LEN (AS) will give X a value equal to the number of characters in AS. If $A S$ is HELLO, then $X$ will be 5 . This expression has many uses. Once you know the length
of a string, you can manipulate it in various fashions. While the Sinclair does not have the LEN function, it does have TLS which removes the first character of a string. Using TLS in a loop, the length of any string variable can be determined. The basic approach is to keep chopping off the first character of a string until there is nothing left. If you count how many beheadings have occurred, you will know the length of the string. Here's one way to do it.
10 INPUT AS
20 LET L $=0$
30 LET $\mathrm{B} \$=\mathrm{A} \$$
40 IF BS $=$ "" THEN GOTO 100
50 LET BS $=$ TLS $(\mathrm{B} \$)$
60 LET L $=\mathrm{L}+1$
70 GOTO 40
100 PRINT AS; "HAS A LENGTH OF" ; L
The program is fairly straightforward. Since TLS destroys the variable, AS is preserved by using BS for the operation. When B\$ has only one character left, the result of TLS (BS) will produce a null string (represented in line 50 as a pair of quotes with nothing between them).

That's all for now. If you have any specific functions you would like to see covered here, drop me a line.

## puzzle answers

## A Building Problem:



Lucky Number: Multiply the selected number by 9 , and use the product as the multiplier for the larger number. It will be found that the results will be respectively as under:

12345679	x $9=111$	111	111
"	$\times 18=222$	222	222
"	$\times 27=333$	333	333
"	x $36=444$	444	444
"	x $45=555$	555	555
"	$\times 54=666$	666	666
"	$\times 63=777$	777	777
"	$\times 72=888$	888	888
"	x $81=999$	999	999

It will be observed that the result is in each case the "lucky" number, nine times repeated.

The Puffer-Belly Problem: The speed of the two trains in relation to one another is $45+36=81$ miles per hour. This equates out to:

$$
\frac{5,280 \times 81}{60 \times 60}=118.8 \text { feet per second }
$$

The length, then, of the Dover train is $6 \times 118.8=$ 712.8 feet.

A Seven-Letter Charade: The answer is the word ENGLAND. The other words are END, GLAD, ANGEL, LAND.

The Three Jealous Husbands: For the sake of clearness, we will designate the three husbands $A, B$, and $C$, and their wives $a, b$, and $c$, respectively. The passage may then be made to the satisfaction of the husbands in the following order:

1. $a$ and $b$ cross over, and $b$ brings back the boat.
2. $b$ and $c$ cross over, $c$ returning alone.
3. $c$ lands and remains with her husband, while $A$ and $B$ cross over. $A$ lands, $B$ and $b$ return to the starting point.
4. $B$ and $C$ cross over, leaving $b$ and $c$ at the starting point.
5. $a$ takes back the boat and $b$ crosses with her.
6. $a$ lands and $b$ goes back for $c$.

The Four Jealous Husbands: Distinguishing the four husbands as $A, B, C$ and $D$. and the four wives as $a, b, c$, and $d$, respectively, the answer to this version is:

1. $a, b$, and $c$ cross over; $c$ brings back the boat.
2. $c$ and $d$ cross over; $d$ brings back the boat.
3. $A, B$, and $C$ cross over; $C$ and $c$ bring back the boat.
4. C, D, and $c$ cross over.
5. $c$ takes back the boat and fetches $d$.

## Sinclair ZX80

## 8K Basic ROM and 16K-Byte RAM Pack Specifications

The 8 K Basic ROM and the 16 K -Byte RAM pack are now available from Sinclair Research (see Resources column). The specifications for these units are as follows.

## ZX80 8K BASIC ROM

The 8 K Basic ROM for the ZX80 is designed for high-level, full-facility computing. The chip-a drop-in replacement for the existing 4 K Basic ROM - comes with a new keyboard template and a supplementary operating manual.

Key features of the new 8 K BASIC ROM include -

- fully floating-point arithmetic to 9-digit accuracy,
- logs, trig, and their inverse functions,
- graph plotting facility,
- animated displays using PAUSE n,
- full set of string-handling facilities.
- n dimensional arrays,
- n dimensional string arrays,
- cassette LOAD and SAVE with named programs.

Full specification follows.

## Numbers

Stored in 5 bytes in floating point binary form giving 9 x $10^{-44}$ to $1.1 \times 10^{43}$ accurate to $91 / 2$ decimal digits.

## Variables

Numeric:
String:
FOR-NEXT:
Numeric arrays:
String arrays:

## Arrays

Numeric arrays: ' $n$ ' dimension, subscript range starts
String arrays: (more correctly, character arrays)

Any letter, followed by alphanumerics. AS-Zs.
A - Z.
A -Z .
AS-ZS.
' $n$ ' dimension, subscript range starts at 0 . If the last subscript is omitted it's treated as a fixed length string.

## Strings

Undimensioned strings can be any length.
Can be concatenated ( + ).
Substring eg BS $=\mathrm{A}$ (2 TO 4).
Literal strings eg C $\$=$ "QWERTY".

## Statements available

In this list,

V
x,y,z
m,n
e
f
f
represents a variable.
represent numerical expressions.
represent numerical expressions that are rounded to the nearest integer. represents an expression.
represents a string valued expression.
represents a statement.

Note that arbitrary expressions are allowed everywhere (except for the line number at the beginning of a statement). Thus "GOTO LN A ** 2 " is valid.


Keyboard template for new 8 K BASIC ROM.

CLEAR	Deletes all variables, freeing the space they occupied.		
CLS	(Clear Screen) deletes all PRINT output in the display file.		
CONTINUE	Resumes execution of the last run pro-gram-repeats the last statement if an error was detected, otherwise restarts at the next one. Note that a command (immediate execution) statement counts as a program and so destroys the reentry data.	PAUSE n PLOT m,n	Sends the display file to the TV screen for n frames ( 50 frames per second) or until a key is pressed.   Sends the PLOT position (a system variable) to ( $\mathrm{m}, \mathrm{n}$ ) and blacks in that pixel. Also changes the PRINT position.
DATA...	Standard, but no unquoted strings.	POKE m,n	Writes n in byte m in RAM.
DIM... DRAW m.n	Deletes any array or string with the same name, sets up space for a new array in the usual way, and initialises its element to 0 or " ".	PRINT...	Mostly standard. The display file has 22 lines of 32 characters each ( 2 zones of 16 characters) and when this is filled it is sent to the TV with error 5. CONTINUE carries on with the program with no loss of data.
DRAW m,n	Let ( $u, v$ ) be the current PLOT (q.v.) position. Draws a line as straight as possible from $(u, v)$ to $(u+m, v+n)$ by blacking in pixels (quarter character squares). Changes the PLOT and PRINT positions.	PRINT AT m,n PRINT TO de	Moves the PRINT position to line m, character n .   Alters the PRINT format. Here d is an optional digit between 1 and 8 (default
FOR A TO B STEP C	Generally standard, but entirely dynamic in its action.		value 8 ) and e is an optional letter E . From now until another such formatting item, numbers will be printed to d signi-
NEXT	The effect of a NEXT statement is to look up the corresponding FOR-variable, increment its value by the STEP, check whether the limit is exceeded and if not jump to the looping line number.		ficant digits, and if $E$ is present they will always be printed using scientific notation.   On switch-on, the format is initialised so that numbers are printed to 8 digits and
GOSUB $n$ GOTO n	Transfers control to BASIC subroutine.		scientific notation is avoided where possible. Note that PRINT does not change the PLOT position.
		RANDOMIZE	Standard
IF x THEN s	If $x$ is true (defined to mean greater in absolute value then $2^{-112}$ ) then $s$ is executed. The standard values of true and false as yielded by relational opera-	RANDOMIZE n	If n is given this is made the value of the seed of the random number generator.
	tors are 1 and 0 .	READ v	Reads v from a data statement.
INPUT v	Outputs the display file to the screen with no special INPUT prompt; the rest	REM...	Remember, for program comments.
	is standard. Cannot be used as a command (immediate execution) statement.	RESTORE	Reinitialises the data (so it can be read again).
LIST	Lists from start of program.	RETURN	Return from subroutine.
LIST n	Lists program starting at line n with program cursor pointing at line $n$.	RUN	RUNs the BASIC program.
LOAD f	Looks for a program called $f$ on tape an	RUN n	CLEAR followed by GOTO n .
	loads it and its variables.	SAVE f	Saves program and variables on tape and calis it f .
NEW	Default $\mathrm{n}=0$. Erases BASIC program and variables.	SCROLL	Scrolls display file up one line, losing
NEW n	n is used to alter a system variable known as RAM TOP, which is the address of a byte in RAM. The area	STOP	top line and making space at bottom.
	from RAM TOP on is untouched by the BASIC system, and POKEd programs can be left there in safety.	UNDRAW m,n UNPLOT m,n	These are like DRAW and PLOT, but blank out pixels instead of blacking them in.


Functions	Type of Operand	Result
	number	Negate
ABS	number	Absolute magnitude
ARCOS	number	In Radians
ARCSIN	number	In Radians
ARCTAN CHRS	number number	In Radians The character whose code is x .
CODE COS	number number	The code of the first character is x (or 0 if x is empty) In radians.
EXP	number	$\mathrm{e}^{\mathrm{x}}$
INKEY \$ INT	number number	Reads the keyboard. The result is a character representing the key pressed, otherwise the empty string. Integer.
LEN	string	The length of x .
LN	number	Natural log
NOT	number	Exclusive-ORs the first byte of x with 113 , so that NOT $0=1$, NOT $1-0$. Unlike the other functions, NOT has binding power 4 (between AND and the relational operators) NOT A = $B$ has the same value as $\operatorname{NOT}(\mathrm{A}=\mathrm{B})($ and $\mathrm{A}<>\mathrm{B})$.
PEEK	number	The value of the byte in store whose address is x .
PI		$\pi$ (3.1415927)
RND		A random number between 0 and 1 .
SGN	number	Yields $-1,0,+1$.
SIN	number	In Radians.
SQRT	number	Square root.
STRS	number	The string of characters that would appear on the screen if $x$ were PRINTed.
TAN	number	In Radians.
USR	number	Converts x to an address in store and calls that address as a machine code subroutine. On return, the result is the contents of the h1 register pair.



## Graphics

All characters, their reverses, and all graphics can be entered directly from the keyboard.

## ZX80 16K-BYTE RAM PACK

The complete module is designed to provide massive addon memory capacity.

The 16K-BYTE RAM pack can be used for program storage or as a database. Yet it costs up to half the price of competitive additional memory.

Measuring approximately $3^{\prime \prime} \times 3^{\prime \prime} \times 1.25^{\prime \prime}$ the RAM pack plugs into the existing expansion port on the rear of the Sinclair ZX80 via an edge connector. No additional power supply is needed.

"This one is called 'Kafka'. It is programmed to try to present the user from figuring out how to play it.


David Ahl, Founder and
Publisher of Creative Computing

You might think the term "creative computing" is a contradiction. How can something as precise and logical as electronic computing possibly be creative? We think it can be. Consider the way computers are being used to create special effects in movies-image generation, coloring and computer-driven cameras and props. Or an electronic "sketchpad" for your home computer that adds animation, coloring and shading at your direction. How about a computer simulation of an invasion of killer bees with you trying to find a way of keeping them under control?

## Beyond Our Dreams

Computers are not creative per se. But the way in which they are used can be highly creative and imaginative. Five years ago when Creative Computing magazine first billed itself as "The number 1 magazine of computer applications and software, " we had no idea how far that idea would take us. Today, these applications are becoming so broad, so allencompassing that the computer field will soon include virtually everything!

In light of this generality, we take "application to mean whatever can be done with computers, ought to be done with computers or might be done with computers. That is the meat of Creative Computing.

Alvin Toffler, author of Future Shock and The Third Wave says, "I read Creative Computing not only for information about how to make the most of my own equipment but to keep an eye on how the whole field is emerging.

Creative Computing, the company as well as the magazine, is uniquely lighthearted but also seriously interested in all aspects of computing. Ours is the magazine of software, graphics, games and simulations for beginners and relaxing professionals. We try to present the new and important ideas of the field in a way that a 14 year old or a Cobol programmer can understand them. Things like text editing. social

# creative corrpatireg 

## "The beat covered by Creative Computing is one of the most important, explosive and fast-changing."-Alvin Toffler

simulations, control of household devices, animation and graphics, and communications networks

## Understandable Yet Challenging

As the premier magazine for beginners, it is our solemn responsibility to make what we publish comprehensible to the newcomer. That does not mean easy; our readers like to be challenged. It means providing the reader who has no preparation with every possible means to seize the subject matter and make it his own.

However, we don't want the experts in our audience to be bored. So we try to pubiish articles of interest to beginners and experts at the same time. Ideally, we would like every piece to have instructional or informative content-and some deptheven when communicated humorously or playfully. Thus, our favorite kind of piece is acessible to the beginner, theoretically non-trivial, interesting on more than one level, and perhaps even humorous.

David Gerrold of Star Trek fame says, "Creative Computing with its unpretentious, down-to-earth lucidity encourages the computer user to have fun. Creative Computing makes it possible for me to learn basic programming skills and use the computer better than any other source.

## Hard-hitting Evaluations

At Creative Computing we obtain new computer systems, peripherals, and software as soon as they are announced. We put them through their paces in our Software Development Center and also in the environment for which they are intendedhome, business, laboratory, or school.

Our evaluations are unbiased and accurate. Wecompared word processing printers and found two losers among highly promoted makes. Conversely, we found one computer had far more than its advertised capability. Of 16 educational packages, only seven offered solid learning value.

When we say unbiased reviews we mean
it. More than once, our honesty has cost us an advertiser-temporarily. But we feel that our first obligation is to our readers and that editorial excellence and integrity are our highest goals.

Karl Zinn at the University of Michigan feels we are meeting these goals when he writes. "Creative Computing consistently provides value in articles, product reviews and systems comparisons . . . in a magazine that is fun to read.

## Order Today

To order your subscription to Creative Computing send payment to the appropriate address below. Customers in the continental U.S. may call toll-free to charge a subscription to Visa, MasterCard or American Express

## Canada and

Term USA Foreign Surface Foreign Air 1 year $\$ 20$ \$29 or $£ 12.50 \quad \$ 50$ or $£ 21$ 2 years $\$ 37 \quad \$ 55$ or $£ 24.00 \quad \$ 97$ or $£ 41$ 3 years $\$ 53 \$ 80$ or $£ 34.50 \quad \$ 143$ or $£ 61$

We guarantee your satisfaction or we will refund your entire subscription price.

Join over 80,000 subscribers like Ann Lewin. Director of the Capital Children's Museum who says, "I am very much impressed with Creative Computing. It is helping to demystify the computer. Its articles are helpfu!, humorous and humane The world needs Creative Computing.

# creative corppatiré 

PO Box 789-M Morristown. NJ 07960 Toll-free 800-631-8112 (In NJ 201-540-0445)
27 Andrew Close. Stoke Golding Nuneaton CV13 6EL, England

## Key Click Generator

## by Matthew J. Johnson

This simple circuit will produce an audible tone whenever the ZX 80 screen is blanked, yielding a click to indicate key closure, or a steady tone during processing.
Examination of the "SYNC" line (IC 19-PIN 5) with an oscilloscope reveals three constituent signals: Line Sync (denoted $\overline{\mathrm{LS}}$ ); Frame Sync ( $\overline{\mathrm{FS}}$ ); and Keyboard ( $\overline{\mathrm{KBD})}$. These signals are low assertion, as indicated, and have period and repetition rates as follows:

Signal	Period	Rep. Rate
$\overline{\mathrm{LS}}$	6 us	58 us
$\overline{\mathrm{FS}}$	380 us	18 ms
$\overline{\mathrm{KBD}}$	6 ms	N/A

The time constant of the RC low pass filter was chosen to allow the second gate to switch only on signals long with respect to $\overline{\mathrm{FS}}$, i.e., $\overline{\mathrm{KBD}}$. When SYNC returns high, the first gate sinks the discharge current of the capacitor via the Germanium diode, resetting the circuit. Germanium is used here to insure that the minimum negative-going threshold voltage ( $\mathrm{V}_{\tau}<0.6 \mathrm{~V}$ ) of the second gate is reached. turning off the buzzer. The Schmitt-trigger was chosen for its high positive-going threshold, enabling a less critical circuit design than would be possible using standard TTL.

The buzzer (a piezoelectric job from Radio Shack \#273-064) drive circuit is taken directly from the blister pack except for the diode added to PIN 8 to clamp positive oscillations to the five volt rail.

A 74LS121 one-shot could be used instead of the 74LS14 to eliminate the steady tone during processing, but I prefer having the sound as an indication of processing activity.

The Schmitt-trigger was "piggy-backed" on IC 19. picking up power and the common (PIN 5) SYNC signal with a dab of solder. I used that "double sided stick "em stuff" intended for wall hangings to mount the buzzer across two other IC's. The balance of the circuit was "sky-wired" and the entire modification was neatly fitted within the standard ZX80 case, so as not to obtrude in an obvious manner. A bit of insulating tape may be needed on the inside of the cover to prevent shorts.

The audio feedback has made life with the ZX80 passive keyboard enjoyable and has freed my attention to concentrate on what-as opposed to how-I am typing.

Matthew J. Johnson. 92 Devir St.. Malden. MA 02148 .



Only Fiction
or is it?
Tales of the Marvelous Machine: 35 Stories of Computing

A robot friend. A computer God. Artificial intelligence challenging human intelligence in a life and death struggle. A detective solving a computer murder. Computers tricking people or people tricking people with computers. A computer with a soul. Or power. A lonely computer. Or one in love with its operator.

In thity-five wonderful stories about computers, authors such as Frederick Pohl, Charles Mosmann, M.V. Mathews, Carol Cail, and George Chesbro depict a life in which computers affect the way people live, think, and relate to each other. Interested in what the effect of computer saturation might be? Only fiction can so wonderously dramatize furure life.
The book is fun, and will provide wonderful hours of entertainment. For the reader interested in a structured approach to understanding the potential roles of the computer, or wanting quickly to locate stories that support or challenge his viewpoint, a multiple table of contents is provided. This lists the stories in fourteen different categories.

For example, a list of stories in which the computer takes on the attributes of a human separates them from those in which the computer is only an intelligent machine. The stories are categorized by whether they clarify, improve, or worsen the human lot. Stories in which the computers have capabilities available today are separated from those in which the capabilities could be available in the future. There is a listing of the wildly whimsical stories and those in which the computer is utilized in a unique fashion.
Can criminals be caught by computer? Does computer crime pay? Do computers fall in love? Are we ali part of a larger organic computer? Here are 35 tantalizing tales that will open your eyes to a new perspective of computers.

Skillfully drawn illustrations augment the stories, giving glimpses of scenes as envisioned by 20 ralented artists. This artwork adds another dimension to the text.

Tales of the Marvelous Machines: 35 Stories of Computing, edited by Robert Taylor and Burchenal Green, is a beautiful big $8 \frac{1}{2} 2^{\prime \prime} \times 11^{\prime \prime}$ softbound anthology of 272 pages. 12 B

It is available for $\$ 7.95$ plus $\$ 2.00$ shipping and handling per order from Creative Computing,
P.O. Box 789-M. Morristown, NJ 07960. NJ residents add $5 \%$ sales tax. Visa, MasterCard and American Express orders are welcome. For faster senvice, call in your bank card order toll free to 800-631-8112 (in NJ call 201-540-0445). Or use the handy order form bound into this magazine.

## The ZX80 Keyboard James H. Parsons

The ZX80's keyboard is of the simple membrane type which is matrix scanned to read a key. The principle behind a membrane keyboard is relatively simple and is illustrated below in Figure 1. The base layer is a printed circuit board which has a matrix of circular contacts, like those shown in Figure 2, laid out in a grid. Each contact has two traces running from it.

The top layer of the system is the flexible keyboard template. Located above each contact on the base layer is a small, circular contact. When a key is pressed, the contact on the bottom side of the template presses down on its respective keyboard contact, creating a conductive path, and thus closing the switch.

The process by which a key closure is located is called matrix scanning, and it works as follows. As you will note by looking at the schematic diagram of the keyboard in Figure 3, the rows of the keyboard are connected to the anodes of a group of diodes. The cathodes of the diodes are connected to the higher eight address lines. The columns of the keyboard are connected to the inputs of IC 10, a 74LS365 tri-state bus driver. The diodes are used to inhibit sinking of the address lines by the pull-up resistors (R13-R17). The resistors are used just on good design principle and do not make any major functional difference in the machine; in fact, the system works without them.

To scan for a key, sequence through each address line, setting it low and all other high. Read the column data from ICIO. When an address line is low, its respective diode will allow a logic 0 to pass through; when an address line is high, its respective diode will create an output similar to that of a tri-stated output.

James H. Parsons, 1921 Flintlock Terrace West, Colorado Springs, CO 80918.


Figure 1.

When a key closure is made, either a low signal or a tri-state signal is sent to the input of IC10. IC 10, being a standard 74LSxx gate, has internal pull-up resistors on its inputs. A tri-state type signal presented as input to IC10 will, therefore, allow the pull-up resistor to pull-up the
input line and turn the input transistor on, thus causing a logic 1 to be the effective input. When a logic 0 input is received, the input line becomes grounded, and the internal input pull-up is disabled, thus causing a logic 0 to be the effective input.


Figure 2.


Figure 3.

IC10 is enabled when the signal $\overline{\mathrm{KBD}}$ (see Figure 3) is active (i.e., low). As you will note, the signal is derived from two OR gates. Logically, the signal is $\overline{\mathrm{KBD}}=$ $\mathrm{A} 0+\overline{\mathrm{RD}}+\overline{\text { IORQ }}$. Essentially, all of the three inputs must be low to enable IC10. This means that an I/O read (a Z80 IN instruction) is being done from any even address (i.e., any address with $\mathrm{A} 0=0$ ).

During an $\mathrm{I} / \mathrm{O}$ request $(\overline{\mathrm{I} 0 \mathrm{RQ}=0})$, the contents of the A register are placed on the higher eight bits of the address bus. During a keyboard read, the higher eight bits of the address are referred to as the keyboard mask. Executing an IN A, FEh instruction will output the keyboard mask and then read the value of IC10 into the A register. (NB FEh is not the only possible port address; any even value will work.)
A simple routine to test for the BREAK key is shown below:

LD A.7Fh
IN A, (FEh)
RRA
JR NC, BRKPRS

The first instruction loads the keyboard mask into A. This particular mask has all but the ms bit of A (bit 7) set (i.e., 0111 1111 binary). The IN instruction puts out the mask and reads a column from the keyboard. With a mask of 7 Fh , the column read is BREAK, EDIT, P, RUBOUT, NOT, NEW, LIST, SHIFT.

When the IN terminates, if no keys were hit, all of the keyboard bits (i.e., dod4 of A) will be set. If a key is pressed, then its corresponding bit in A will be a logic 0 , provided it was in the selected column. After the IN instruction, the data for the BREAK key will, therefore, reside in bit 0 of $A$.
The RRA instruction rotates the contents of register A one bit to the right. Bit 7 comes from the data in the carry flag. The carry flag is set to the data in bit 0 position of A (i.e., the data for the BREAK key). Now the carry flag will contain a 0 if BREAK was pressed; otherwise it will hold a 1. The next instruction, if the carry flag is clear, will jump to BRKPRS.

The keyboard and display subroutine scans the keyboard to see if a key was pressed; if not, it passes a frame to the display and loops back to the keyboard scan section. If a key is pressed, then the routine will return to its caller. This routine is shown in Listing 1.

To use the routine, execute a CALL 13 Ch instruction. It will return a value in the BC register pair, which corresponds to the keyboard mask and column input for the key pressed. Bits 5,6 , and 7 will be set to ones by the OR 0EOh instruction at 55 :. Bit 0 of B will be zero if SHIFT was pressed; otherwise it will be a 1 . C will hold the keyboard mask. For example, if the Z key is pressed, B will hold F7h (i.e., 11110111 ) and C will hold FEh (i.e., 1111 1110).

Listing 2 shows a method for obtaining a ZX80 character in A. The subroutine FILLDF assures that there are enough NewLines in the display file.

I hope that this article has provided some insight into the workings of the ZX80 keyboard.

RESULT:	EQU	4022h
FRAMES:	EQU	401Eh
CH_ADD:	EQU	4026h
LOOP:	Call Show:	Space between last line of chars and fram sync
DISP:		Enter here from BASIC to get a key and display the current


	OR E   RET Z	If $\left(\mathrm{X} \_\mathrm{PTR}\right)=\mathrm{BC}$. a key is depressed and $:$ count $=\varnothing$. exit with A.D.E $=\varnothing$
343	LD A.B	
	CP 254	
	SBC A.A.	
	AND B	
	RRA	
	LD (HL). A	
	DEC B	
25:	DJNZ 2 S	
	OUT ( $\phi$ FFh). A	frame sync ends at next M1
	LD A.-2¢	
	LD B. 25	
	LD HL. (D_FILE)	: Get HL= first byte of display file
	SET 7.H	: Insure Interrupt
	CALL SHOW	: Display space above picture and 24
	LD A.-13	lines of text
	INC B	
	DEC HL	
	DEC (IY + RESULT	
	+1-Y)	; One less line below picture than above
	JR LOOP	
SHOW:	LD C. (IY + RESULT	
	+1-Y)	: \#picture lines in first line of text (31)
	LD R.A	
	LD A.-35	Value for R in subsequent lines
	EI	
	JP (HL)	: Will return to caller at end of picture

Listing 2.

KB TAB: EQU 06Ch
FILLDF: EQU 05C2h
DISP: EQU 013Fh
KWLOW: EQU 0E6h
GETKEY: Call FILLDP
Call DISP : Fill display file $w /$ reqd $N /$ Ls
SRA B
SBC A.A
OR 38
LD L. 5
SUB L
\$1: ADD A.L
SCF
RR C
JR C.S1
INC C
JR NZ.GETKEY : If more than one bit set
LD HL.KB_TAB-1
LD E.A
ADD HL.DE
LD A. (HL)
JR.Z.S2
ADD A.0C0h ; Here if in KW state: i.e.. convert
CP KWLOW
JR N C. $\$ 2$
LD A. (HL)
\$2: RET
from
letter to keyword

Here with char in A




## Resources for the ZX80 and MicroAce

We welcome entries from manufacturers and readers for the resources column. Please include the name of the item. a brief description, price. and complete data on how to obtain it. Send contributions to SYNC Resources. 39 East Hanover Avenue. Morris Plains. New Jersey 07950.

## Software

- Moving graphics games Super ZX80 Invasion ( 1 K and 2 K ) and Double Breakout, Cassettes, $\$ 14.95$ each plus $\$ 1.50$ shipping. Check or money order to:

SOFTSYNC. INC.
P.O. Box 480

Murray Hill Station
New York, NY 10156

- Games and educational software. Hardware and technical information in the near future.

TENSOR TECHNOLOGY
4 Morning Dove
Irvine, CA 92714

- ZXBUG ( $11 / 2 \mathrm{~K}$ )

A machine code degugging program; useful for programming in machine code. An annotated disassembled listing of the 4 K Basic. Much more software.

Artic Computing
396 James Reckett Avenue
Hull HU8 OHA
England

- 1K games:

Adventure Cassette (Dragonslayer: Lunar Landing; graphics) Vegas Cassette (Black Jack, Slots) $\$ 6.95$ per cassette (postage included); check or money order only.
J. Schwitalla

1235 Pickwick Place
Flint. MI 48507

- Games. subroutines. and teaching aids in Basic and Machine Code. SASE for complete list.

Zeta Software
P.O. Box 3522

Greenville, SC 29608

- 7 Games for the ZX80 and MicroAce (one cassette)
\$11 from:
New England Software
Box 691
Hyannis. MA 02601
- ZX80Software on cassette. Games. educational. programming course.

> Bug-Byte
> 251 Henley Road
> Conventry CV2 1BX

## Users Groups

- Educational ZX80/1 Users's Group Highgate School
Birmingham B12 9DS
U.K.
(Publishes a newsletter)
- ZX80 Amateur Radio Users` Group (for licensed amateur radio operators) c/o K2MI. Martin H. Irons 46 Magic Circle Drive Goshen. NY 10924
- National ZX80 Users Club Membership free; publishes Interface magazine; send large, stamped, addressed envelope plus one 10 p stamp to:

National ZX80 Users Club
44-46 Earls Court Road
London. W8 6EJ
England

## Hardware

- Super Isolator, Model ISO-11

A control for severe AC power line spikes, surges, and hash.
\$94.95. Call (617) 655-1532
Electronic Specialists, Inc.
171 S. Main St.
Natick, MA 01760

- 16 K -Byte RAM for massive add-on memory.
$\$ 99.95+\$ 4$ shipping.
8 K Basic ROM (replacement chip for ZX 80 ).
$\$ 39.95+\$ 4$ shipping.
Phone orders (Visa, Master Card): 800-543-3000, op. 508
Mail orders:
Sinclair Research Ltd.
1 Sinclair Plaza
Nashua, NH 03061
- Keyboard beeper, $\$ 12$

Burnett Electronics
908 Morris St.
Cincinnati, OH 45206

- 55 Key keyboards for the ZX80 or MicroAce.
Complete plans for $\$ 5$ : keyboard $\$ 14.95$.
Complete kit (keyboard, parts, etc.):
$\$ 29.95$.
Schultz Systems
1026 Ferdinand
San Antonio. TX 78245


## The Sinclair ZX80 is innovative and powerful. Now there's a magazine to help you get the most out of it.

## Get in sync

SYNC magazine is different from other personal computing magazines. Not just different because it is about a unique computer, the Sinclair $\mathrm{ZX80}$ (and kit version, the MicroAce). But different because of the creative and innovative philosophy of the editors.

## A Fascinating Computer

The $\mathrm{ZX80}$ doesn't have memory mapped video. Thus the screen goes blank when a key is pressed. To some reviewers this is a disadvantage. To our editors this is a challenge. One suggested that games could be written to take advantage of the screen blanking. For example, how about a game where characters and graphic symbols move around the screen while it is blanked? The object would be to crack the secret code governing the movements. Voila! A new game like Mastermind or Black Box uniquely for the ZX 80 .

We made some interesting discoveries soon after setting up the machine. For instance, the CHR\$ function is not limited to a value between 0 and 255 , but cycles repeatedly through the code. CHR\$ (9) and CHR\$ (265) will produce identical values. In other words, CHR\$ operates in a MOD 256 fashion. We found that the " $=$ " sign can be used several times on a single line, allowing the logical evaluation of variables. In the Sinclair, LET $X=Y=Z=W$ is a valid expression.

Or consider the TL\$ function which strips a string of its initial character. At first, we wondered what practical value it had. Then someone suggested it would be perfect for removing the dollar sign from numerical inputs

Breakthroughs? Hardly. But indicative of the hints and kinds you'll find in every issue of SYNC. We intend to take the Sinclair to its limits and then push beyond, finding new tricks and tips, new applications, new ways to do what couldn't be done before. SYNC functions on many levels, with tutorials for the beginner and concepts that will keep the pros coming back for more. We ll show you how to duplicate commands available in other Basics. And, perhaps, how
to do things that can't be done on other machines.

Many computer applications require that data be sorted. But did you realize there are over ten fundamentally different sorting algorithms? Many people settle for a simple bubble sort perhaps because it's described in so many programming manuals or because they've seen it in another program. However, sort routines such as heapsort or ShellMetzner are over 100 times as fast as a bubble sort and may actually use less memory. Sure, 1 K of memory isn't a lot to work with, but it can be stretched much further by using innovative, clever coding. You'll find this type of help in SYNC.

## Lots of Games and Applications

Applications and software are the meat of SYNC. We recognize that along with useful, pragmatic applications, like financial analysis and graphing, you'll want games that are fun and challenging. In the charter issue of SYNC you'll find several games. Acey Ducey is a card game in which the dealer (the computer) deals two cards face up. You then have an option to bet depending upon whether you feel the next card dealt will have a value between the first two.

In Hurkle, another game in the charter issue, you have to find a happy little Hurkle who is hiding on a $10 \times 10$ grid. In response to your guesses, the Hurkle sends our a clue telling you in which direction to look next.

One of the most ancient forms of arithmetical puzzle is called a "boomerang." The oldest recorded example is that set down by Nicomachus in his Arithmetica around 100 A.D. You'll find a computer version of this puzzle in SYNC.

## Hard-Hitting, Objective Evaluations

By selecting the $\mathrm{ZX80}$ or MicroAce as your personal computer you've shown that you are an astute buyer looking for good performance, an innovative design and economical price. However, selecting software will not be easy. That's where SYNC comes in. SYNC evaluates software packages and other peripherals
and doesn't just publish manufacturer descriptions. We put each package through its paces and give you an indepth, objective report of its strengths and weaknesses.

SYNC is a Creative Computing publication. Creative Computing is the number 1 magazine of software and applications with nearly 100,000 circulation. The two most popular computer games books in the world, Basic Computer Games and More Basic Computer Games (combined sales over 500,000) are published by Creative Computing. Creative Computing Software manufactures over 150 software packages for six different personal computers.
Creative Computing, founded in 1974 by David Ahl, is a well-established firm committed to the future of personal computing. We expect the Sinclair $2 \times 80$ to be a highly successful computer and correspondingly, SYNC to be a respected and successful magazine.

## Order SYNC Today

To order your subscription to SYNC, in the USA send $\$ 10$ for one year ( 6 issues), $\$ 18$ for two years ( 12 issues) or $\$ 24$ for three years (18 issues). Send order and payment to the address below or call MasterCard, Visa or American Express orders to our toll-free number.

Subscriptions in the UK are mailed by air and cost $£ 10$ for one year, $£ 18$ for two years or $£ 25$ for three years. Send order and payment to the UK address below.

Canadian and other foreign surface subscriptions cost $\$ 15$ per year or $\$ 27$ for two years and should be sent to the USA address.

We guarantee your satisfaction or we will refund your entire subscription price.

Needless to say, we can't fill up all the pages without your help. So send in your programs, articles, hints and tips. Remember, illustrations and screen photos make a piece much more interesting. Send in your reviews of peripherals and software too-but be warned: reviews must be in-depth and objective. We want you to respect what you read on the pages of SYNC so be honest and forthright in the material you send us. Of course we pay for contributions-just don't expect to retire on it.

The exploration has begun. Join us


39 East Hanover Avenue Morris Plains, NJ 07950, USA Toll free 800-631-8112 (In NJ 201-540-0445)

27 Andrew Close, Stoke Golding Nuneaton CV13 6EL, England

# THE CAI 'WIDGET"® ${ }^{\circledR}$ SERIES OF PERIPHERALS FOR THE ZX-80 OPENS THE DOOR TO REAL COMPUTING <br> $\checkmark$ Check Our Specifications 



## WIDGET ${ }^{\circledR}$ <br> \$4995

PARALLEL TTL INPUT PORT

- Eight bits non-latched
- Draws one low power Schottky load
- Uses:

Interface to user designed circuits
Sensing alarm conditions
Interpreting-limit switches
Accepting user switches or
other input devices
PARALLEL TTL OUTPUT PORT

- Eight bits concurrently latched
- Supplies up to ten (10) low power Schottky loads
- Uses:

Interface to user designed circuits
Activating Led's, Lamps and Indicators
Powering relays, SCRS and
TRIACS for high current 110 VAC loads
Sounding alarms
SERIAL RS-232 INPUT/OUTPUT PORT

- Three wire bi-directional
serial line
- Baud rates strappable at 110,300 , 1200, 2400, 9600
- Communicate with:

Serial printers
Modems (transmit and receive data only)
Terminals (teletypes and CRT's) Graphic plotters

ADDRESS AND CONTROL SIGNALS from the ZX-80 are all buffered to allow ease of expansion.

WIDGET INTERFACES DIRECTLY TO THE WIDGIPRINT and WIDGITAPE and the 16 K RAM and 8 K ROM by simply, plugging one into another.

The WIDGET, like all CAI devices, comes with complete schematics and instructions.

## WIDGIPRINT ${ }^{\text {® }} \$ 99^{95}$

HIGH QUALITY THERMAL PRINTER at a very affordable price
THE WIDGIPRINT PROVIDES THIRTY-TWO (32) COLUMNS OF OUTPUT in compliance with the format shown on the television screen EASY INSTALLATION

- The CAI Printer is designed to plug directly into its own port on the Widget board. This leaves all eight I/O bits on the WIDGET board available to the user. There is no soldering or modifications necessary
- The printer is equipped with its own power supply
SPECIFIC PRINTER SPECIFICATIONS
- Full alpha-numeric capabilities with limited graphics
- Thirty-two (32) characters per line
- Self-contained power system
- Two-hundred lines / minute print speed
- Long life - few moving parts
- Paper size $3.15^{\prime \prime}$ roll style readily available - Size $6.4^{\prime \prime} \times 1.9^{\prime \prime} \times 3.7^{\prime \prime}$
The PRINTER comes with a complete instruction and operations manual.



## WIDGITAPE ${ }^{\circledR}$ \$9995

The WIDGITAPE is designed as a highly reliable mass storage device for the data generated with the ZX-80. This device interfaces through the CAI WIDGET Board, and is completely independent of the tape connections on the ZX-80.
The WIDGITAPE provides much of the functionality found in floppy disks for a fraction of the cost.

## THIS INCLUDES

- Writing a file
- Reading a file
- Extending or modifying a file
- Deleting a file
- Each tape also maintains its own file directory which can be viewed on the television screen
All these functions are programmatically accessable to the user via simple keyboard commands.


## INSTALLATION

- The WIDGITAPE plugs into its own plug on the WIDGET Board with no need to solder or modify the ZX-80.


## USE THIS FORM TO ORDER YOUR WIDGET ${ }^{\circledR}$ PERIPHERALS <br> Send Check, Money Order Or Credit Card Number To:

Quantity	Description	Unit Price	Total
	WIDGET $^{*}$	$\$ 49.95$	
	WIDGIPRINT		
	$\$ 99.95$		
WIDGITAPE	$\$ 99.95$		
TOTAL			

Mastercharge

CAI Instruments, Inc.
P.O. Box 446

Midland, MI 48640 517/835-6145

Add $\$ 5.00$ for shipping and handling Michigan residents add $4 \%$ sales tax

Visa
Exp. Date
Name
Address
City
State
ZIP


[^0]:    Hasse Taube. Ericavej 39. DK 2820 Gentofte.

[^1]:    Raymond Fowkes, P.O. Box 336. Coalinga, CA

[^2]:    Joseph Sutton, 170 S. Hillside Ave., Succasunna,

[^3]:    Martin Oakes. 2100 Oriole Dr.. Freeport. IL 61032.

[^4]:    Keith Comer, 16889 Nichols St. \#d, Huntington Beach, CA 92647.

[^5]:    Ken Berggren, 104 Ridgeway Ave., Louisville,

